snake_l 发表于 2016-10-26 09:07:57

Apache Spark 2.0.0 发布,APIs 更新

欢迎加入运维网交流群:263444886  
                  Apache Spark 2.0.0 发布了,Apache Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
  该版本主要更新APIs,支持SQL 2003,支持R UDF ,增强其性能。300个开发者贡献了2500补丁程序。
  Apache Spark 2.0.0 APIs更新记录如下:

[*]  Unifying DataFrame and Dataset: In Scala and Java, DataFrame and Dataset have been unified, i.e. DataFrame is just a type alias for Dataset of Row. In Python and R, given the lack of type safety, DataFrame is the main programming interface.
[*]  SparkSession: new entry point that replaces the old SQLContext andHiveContext for DataFrame and Dataset APIs. SQLContext and HiveContext are kept for backward compatibility.
[*]  A new, streamlined configuration API for SparkSession
[*]  Simpler, more performant accumulator API
[*]  A new, improved Aggregator API for typed aggregation in Datasets
  Apache Spark 2.0.0 SQL更新记录如下:

[*]  A native SQL parser that supports both ANSI-SQL as well as Hive QL
[*]  Native DDL command implementations
[*]  Subquery support, including

[*]  Uncorrelated Scalar Subqueries
[*]  Correlated Scalar Subqueries
[*]  NOT IN predicate Subqueries (in WHERE/HAVING clauses)
[*]  IN predicate subqueries (in WHERE/HAVING clauses)
[*]  (NOT) EXISTS predicate subqueries (in WHERE/HAVING clauses)

[*]  View canonicalization support
  一些新特性:

[*]  Native CSV data source, based on Databricks’ spark-csv module
[*]  Off-heap memory management for both caching and runtime execution
[*]  Hive style bucketing support
[*]  Approximate summary statistics using sketches, including approximate quantile, Bloom filter, and count-min sketch.
  性能增强:

[*]  Substantial (2 - 10X) performance speedups for common operators inSQL and DataFrames via a new technique called whole stage code generation.
[*]  Improved Parquet scan throughput through vectorization
[*]  Improved ORC performance
[*]  Many improvements in the Catalyst query optimizer for common workloads
[*]  Improved window function performance via native implementations for all window functions
[*]  Automatic file coalescing for native data sources
  更多发布信息,可查看发布说明。
  下载地址:http://spark.apache.org/downloads.html
  
页: [1]
查看完整版本: Apache Spark 2.0.0 发布,APIs 更新