sdoghds88888 发表于 2016-12-6 09:00:44

Hadoop实战-中高级部分 之 Hadoop MapReduce高级编程

Hadoop RestFul
Hadoop HDFS原理1
Hadoop HDFS原理2
Hadoop作业调优参数调整及原理
Hadoop HA
Hadoop MapReduce高级编程
Hadoop IO
Hadoop MapReduce工作原理
Hadoop 管理
Hadoop 集群安装
Hadoop RPC
 

第一部分:重要的组件
Combiner

·什么是Combiner
·combine函数把一个map函数产生的<key,value>对(多个key, value)合并成一个新的<key2,value2>. 将新的<key2,value2>作为输入到reduce函数中,其格式与reduce函数相同。
·这样可以有效的较少中间结果,减少网络传输负荷。
 
·什么情况下可以使用Combiner
·可以对记录进行汇总统计的场景,如求和。
·求平均数的场景就不可以使用了
Combiner执行时机
·运行combiner函数的时机有可能会是merge完成之前,或者之后,这个时机可以由一个参数控制,即 min.num.spill.for.combine(default 3)
·当job中设定了combiner,并且spill数最少有3个的时候,那么combiner函数就会在merge产生结果文件之前运行
·通过这样的方式,就可以在spill非常多需要merge,并且很多数据需要做conbine的时候,减少写入到磁盘文件的数据数量,同样是为了减少对磁盘的读写频率,有可能达到优化作业的目的。
·Combiner也有可能不执行, Combiner会考虑当时集群的负载情况。
Combiner如何使用
·代码示例
·继承Reducer类
public static class Combiner extends MapReduceBase implements
           Reducer<Text, Text, Text, Text> {
       public void reduce(Text key, Iterator<Text> values,
               OutputCollector<Text, Text> output, Reporter reporter)
               throws IOException {
                 }
    }
 
·配置作业时加入conf.setCombinerClass(Combiner.class)
 

Partitioner
·什么是Partitioner
·Mapreduce 通过Partitioner 对Key 进行分区,进而把数据按我们自己的需求来分发。
·什么情况下使用Partitioner
·如果你需要key按照自己意愿分发,那么你需要这样的组件。
·例如:数据文件内包含省份,而输出要求每个省份输出一个文件。
·框架默认的HashPartitioner
·public class HashPartitioner<K, V> extends Partitioner<K, V> {  

  /** Use {@link Object#hashCode()} to partition. */  
  public int getPartition(K key, V value,  
                          int numReduceTasks) {  
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;  
  } 

Partitioner如何使用
·实现Partitioner接口覆盖getPartition()方法
·配置作业时加入conf.setPartitionerClass(MyPartitioner.class);
·Partitioner示例
        public static class MyPartitioner implements Partitioner<Text, Text> {
           
         @Override 
            public int getPartition(Text key, Text value, int numPartitions) {
             }
 
}
Partitioner需求示例
·需求描述
·数据文件中含有省份
·需要相同的省份送到相同的Reduce里
·从而产生不同的文件
·数据样例
·1 liaoning
·1 代表该省份有多少个直辖市
·步骤
·实现Partitioner,覆盖getPartition
·根据省份字段进行切分
 


 RecordReader


·什么是RecordReader
·用于在分块中读取<Key,Value>对,也就是说每一次我们读取一条记录都会调用该类。
·主要是处理经过InputFormat分片完的数据 
·什么时候使用RecordReader
·需要对输入的数据按自己的需求处理
·如:要求输入的key不是文件的偏移量而是文件的路径或者名字
·系统默认为LineRecordReader
·按照每行的偏移量做为map输出时的key值,每行的内容作为map的value值,默认的分隔符是回车和换行。
 


RecordReader需求示例

·需求
·更改map对应的输入的<key,value>值,key对应的文件的路径(或者是文件名),value对应的是文件的内容(content)。
·步骤
·重写InputFormat不对文件切分
·重写RecordReader
·在配置作业时使用自定义的组件进行数据处理
 



 

第二部分:Join
案例分析
·输入为2个文件,文件一内容如下
·空格分割:用户名 手机号 年龄
·内容样例
·Tom 1314567890 14
·文件二内容
·空格分割:手机号 地市
·内容样例
·13124567890 hubei
·需要统计出的汇总信息为 用户名 手机号 年龄 地市
Map端Join
·设计思路
·使用DistributedCache.addCacheFile()将地市的文件加入到所有Map的缓存里
·在Map函数里读取该文件,进行Join
·  将结果输出到reduce
·需要注意的是
·DistributedCache需要在生成Job作业前使用
 

 Reduce端Join


·设计思路
·Map端读取所有文件,并在输出的内容里加上标识代表数据时从哪个文件里来的
·在reduce对按照标识对数据进行保存
·然后根据Key的Join来求出结果直接输出
 

第三部分:排序
 

普通排序
·Mapreduce本身自带排序功能
·Text对象是不适合排序的,如果内容为整型不会安照编码顺序去排序
·一般情况下我们可以考虑以IntWritable做为Key,同时将Reduce设置成0 ,进行排序
 
部分排序
·即输出的每个文件都是排过序的
·如果我们不需要全局排序,那么这是个不错的选择。
 

全局排序
·产生背景
·Hadoop平台没有提供全局数据排序,而在大规模数据处理中进行数据的全局排序是非常普遍的需求。
·使用hadoop进行大量的数据排序排序最直观的方法是把文件所有内容给map之后,map不做任何处理,直接输出给一个reduce,利用hadoop的自己的shuffle机制,对所有数据进行排序,而后由reduce直接输出。
·快速排序基本步骤就是需要现在所有数据中选取一个作为支点。然后将大于这个支点的放在一边,小于这个支点的放在另一边。
 

设想如果我们有 N 个支点(这里可以称为标尺),就可以把所有的数据分成 N+1 个part ,将这 N+1 个 part 丢给 reduce ,由 hadoop 自动排序,最后输出 N+1 个内部有序的文件,再把这 N+1 个文件首尾相连合并成一个文件,收工 。
由此我们可以归纳出这样一个用 hadoop 对大量数据排序的步骤:
1 )   对待排序数据进行抽样;
2 )   对抽样数据进行排序,产生标尺;
3 )   Map 对输入的每条数据计算其处于哪两个标尺之间;将数据发给对应区间 ID的 reduce
4 )   Reduce 将获得数据直接输出。
·Hadoop 提供了Sampler接口可以返回一组样本,该接口为Hadoop的采样器。
           public interface Sampler<K, V> {
                        K[] getSample(InputFormat<K, V> inf, Job job)
                         throws IOException, InterruptedException;
            }
·Hadoop提供了一个TotalOrderPartitioner,可以使我们来实现全局排序。
二次排序
·产生背景
·MapReduce默认会对key进行排序
·将输出到Reduce的values也进行预先的排序
·实现方式
·重写Partitioner,完成key分区,进行第一次排序
·实现WritableComparator,完成自己的排序逻辑,完成key的第2次排序
·原理
·Map之前的数据
         key1  1
         key2  2
         key2  3
         key3  4
         key1  2
·Mapduce只能排序key,所以为了二次排序我们要重新定义自己的key 简单说来就是<key value> value ,组合完后
         <key1  1 >    1
         <key2  2 >    2
         <key2  3 >    3
         <key3  4>     4
         <key1  2 >    2
 

·原理
·接下来实现自定义的排序类,分组类,数据变成
         <key1  1 >    1
         <key1  2 >    2
         <key2  2 >    2
         <key2  3 >    3
         <key3  4>     4
·最后 reduce处理后输出结果
           key1  1
           key1  2
           key2  2
           key2  3
           key3  4
 
  
第四部分:计数器
·什么是计数器
            计数器主要用来收集系统信息和作业运行信息,用于知道作业成功、失败等情况,比日志更便利进行分析。
·内置计数器
·Hadoop内置的计数器,记录作业执行情况和记录情况。包括MapReduce框架、文件系统、作业计数三大类。
·计数器由关联任务维护,定期传递给tasktracker,再由tasktracker传给jobtracker。
·计数器可以被全局聚集。内置的作业计数器实际上由jobtracker维护,不必在整个网络中传递。
·当一个作业执行成功后,计数器的值才是完整可靠的。
 

 用户自定义Java计数器

·MapReduce框架允许用户自定义计数器
·计数器是全局使用的
·计数器有组的概念,可以由一个Java枚举类型来定义
·如何配置
·0.20.2以下的版本使用Reporter,
·0.20.2以上的版本使用context.getCounter(groupName, counterName) 来获取计数器配置并设置。
·动态计数器
·所谓动态计数器即不采用Java枚举的方式来定义
 
·Reporter中的获取动态计数器的方法
·public void incrCounter(String group,String counter,long amount)
            组名称,计数器名称,计数值
 
·一些原则
·创建计数器时,尽量让名称易读
 
 ·获取计数器
·Web UI
·命令行 hadoop job-counter
·Java API
·Java API
·在作业运行完成后,计数器稳定后获取。 使用job.getCounters()得到Counters
 
  
第五部分:合并小文件示例
·产生背景
·Hadoop不适合处理小文件
·会占用大量的内存空间
·解决方案
·文件内容读取到SequenceFile内
 

  转载请注明出处【 http://sishuok.com/forum/blogPost/list/0/5961.html】
页: [1]
查看完整版本: Hadoop实战-中高级部分 之 Hadoop MapReduce高级编程