杨叔叔 发表于 2016-12-7 06:41:16

hadoop中的Writable分析

  hadoop 要使一个类能序例化, 要实现Writable接口, Writable 调用DataInput和DataOutput实现序例化。 
  DataOutput是JDK中IO包下的一个类, 提供了writeBoolean, writeByte, writeShort。等方法了。
  这样让用户决定哪一个字段序例化, 怎么反序例化。
  在org.apache.hadoop.io包下包含了大量的可序列化的组件,它们都实现了Writable接口,Writable接口提供了两个方法,write和readFields,分别用来序列化和反序列化。

/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements.See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership.The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License.You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.io;
import java.io.DataOutput;
import java.io.DataInput;
import java.io.IOException;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
/**
* A serializable object which implements a simple, efficient, serialization
* protocol, based on {@link DataInput} and {@link DataOutput}.
*
* <p>Any <code>key</code> or <code>value</code> type in the Hadoop Map-Reduce
* framework implements this interface.</p>
*
* <p>Implementations typically implement a static <code>read(DataInput)</code>
* method which constructs a new instance, calls {@link #readFields(DataInput)}
* and returns the instance.</p>
*
* <p>Example:</p>
* <p><blockquote><pre>
*   public class MyWritable implements Writable {
*       // Some data   
*       private int counter;
*       private long timestamp;
*      
*       public void write(DataOutput out) throws IOException {
*         out.writeInt(counter);
*         out.writeLong(timestamp);
*       }
*      
*       public void readFields(DataInput in) throws IOException {
*         counter = in.readInt();
*         timestamp = in.readLong();
*       }
*      
*       public static MyWritable read(DataInput in) throws IOException {
*         MyWritable w = new MyWritable();
*         w.readFields(in);
*         return w;
*       }
*   }
* </pre></blockquote></p>
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Writable {
/**
* Serialize the fields of this object to <code>out</code>.
*
* @param out <code>DataOuput</code> to serialize this object into.
* @throws IOException
*/
void write(DataOutput out) throws IOException;
/**
* Deserialize the fields of this object from <code>in</code>.
*
* <p>For efficiency, implementations should attempt to re-use storage in the
* existing object where possible.</p>
*
* @param in <code>DataInput</code> to deseriablize this object from.
* @throws IOException
*/
void readFields(DataInput in) throws IOException;
}

 
页: [1]
查看完整版本: hadoop中的Writable分析