51qsx 发表于 2016-12-10 09:27:26

hadoop 0.20 程式開發 eclipse plugin

  http://trac.nchc.org.tw/cloud/wiki/waue/2009/0617
  hadoop 0.20 程式開發 eclipse plugin + Makefile

  
hadoop 0.20 程式開發

eclipse plugin + Makefile

零. 前言



[*]開發hadoop 需要用到許多的物件導向語法,包括繼承關係、介面類別,而且需要匯入正確的classpath,否則寫hadoop程式只是打字練習...
[*]用類 vim 來處理這種複雜的程式,有可能會變成一場惡夢,因此用eclipse開發,搭配mapreduce-plugin會事半功倍。
[*]早在hadoop 0.19~0.16之間的版本,筆者就試過各個plugin,每個版本的plugin都確實有大大小小的問題,如:hadoop plugin 無法正確使用、無法run as mapreduce。hadoop0.16搭配IBM的hadoop_plugin 可以提供完整的功能,但是,老兵不死,只是凋零...
[*]子曰:"逝者如斯夫,不捨晝夜",以前寫的文件也落伍了,要跟上潮流,因此此篇的重點在:用eclipse 3.4.2 開發hadoop 0.20程式,並且測試撰寫的程式運作在hadoop平台上
[*]以下是我的作法,如果你有更好的作法,或有需要更正的地方,請與我聯絡




單位
作者
Mail


國家高速網路中心-格網技術組
Wei-Yu Chen
waue @ nchc.org.tw



0.0 Info Update



[*]Last Update: 2010/01/22

  最新版本的 Eclipse 3.5 搭配 Ubuntu 9.04 + hadoop-eclipse-plugin 0.20.1 ,初步測試功能皆可正常運作


  但 Ubuntu 9.10 的 各版本 Eclipse , 似乎會有 gtk 圖形介面的bug ,有此一說增加 GDK_NATIVE_WINDOWS=1 就可以解決問題,但經過初步測試似乎無用


0.1 環境說明



[*]ubuntu 8.10
[*]sun-java-6
[*]eclipse 3.4.2
[*]hadoop 0.20.0

0.2 目錄說明



[*]使用者:waue
[*]使用者家目錄: /home/waue
[*]專案目錄 : /home/waue/workspace
[*]hadoop目錄: /opt/hadoop

一、安裝

  安裝的部份沒必要都一模一樣,僅提供參考,反正只要安裝好java , hadoop , eclipse,並清楚自己的路徑就可以了

1.1. 安裝java

  首先安裝java 基本套件

$ sudo apt-get install java-common sun-java6-bin sun-java6-jdk sun-java6-jre

1.1.1. 安裝sun-java6-doc


  1 將javadoc (jdk-6u10-docs.zip) 下載下來 下載點

http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/1-1.png http://trac.nchc.org.tw/cloud/raw-attachment/wiki/0428Hadoop_Lab1/hadoop_administration.png

  2 下載完後將檔案放在 /tmp/ 下


  3 執行


$ sudo apt-get install sun-java6-doc

1.2. ssh 安裝設定


$ apt-get install ssh
$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ ssh localhost

  執行ssh localhost 沒有出現詢問密碼的訊息則無誤

1.3. 安裝hadoop

  安裝hadoop0.20到/opt/並取目錄名為hadoop

$ cd ~
$ wget http://apache.ntu.edu.tw/hadoop/core/hadoop-0.20.0/hadoop-0.20.0.tar.gz
$ tar zxvf hadoop-0.20.0.tar.gz
$ sudo mv hadoop-0.20.0 /opt/
$ sudo chown -R waue:waue /opt/hadoop-0.20.0
$ sudo ln -sf /opt/hadoop-0.20.0 /opt/hadoop


[*]編輯 /opt/hadoop/conf/hadoop-env.sh

export JAVA_HOME=/usr/lib/jvm/java-6-sun
export HADOOP_HOME=/opt/hadoop
export PATH=$PATH:/opt/hadoop/bin




[*]編輯 /opt/hadoop/conf/core-site.xml

<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/tmp/hadoop/hadoop-${user.name}</value>
</property>
</configuration>




[*]編輯 /opt/hadoop/conf/hdfs-site.xml

<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>




[*]編輯 /opt/hadoop/conf/mapred-site.xml

<configuration>
<property>
<name>mapred.job.tracker</name>
<value>localhost:9001</value>
</property>
</configuration>




[*]啟動
$ cd /opt/hadoop
$ source /opt/hadoop/conf/hadoop-env.sh
$ hadoop namenode -format
$ start-all.sh
$ hadoop fs -put conf input
$ hadoop fs -ls


[*]沒有錯誤訊息則代表無誤

1.4. 安裝eclipse



[*]在此提供兩個方法來下載檔案

[*]方法一:下載 eclipse SDK 3.4.2 Classic,並且放這檔案到家目錄
[*]方法二:貼上指令
$ cd ~
$ wget http://ftp.cs.pu.edu.tw/pub/eclipse/eclipse/downloads/drops/R-3.4.2-200902111700/eclipse-SDK-3.4.2-linux-gtk.tar.gz




[*]eclipse 檔已下載到家目錄後,執行下面指令:

$ cd ~
$ tar -zxvf eclipse-SDK-3.4.2-linux-gtk.tar.gz
$ sudo mv eclipse /opt
$ sudo ln -sf /opt/eclipse/eclipse /usr/local/bin/

二、 建立專案


2.1 安裝hadoop 的 eclipse plugin



[*]匯入hadoop 0.20.0 eclipse plugin

$ cd /opt/hadoop
$ sudo cp /opt/hadoop/contrib/eclipse-plugin/hadoop-0.20.0-eclipse-plugin.jar /opt/eclipse/plugins

$ sudo vim /opt/eclipse/eclipse.ini


[*]可斟酌參考eclipse.ini內容(非必要)

-startup
plugins/org.eclipse.equinox.launcher_1.0.101.R34x_v20081125.jar
--launcher.library
plugins/org.eclipse.equinox.launcher.gtk.linux.x86_1.0.101.R34x_v20080805
-showsplash
org.eclipse.platform
--launcher.XXMaxPermSize
512m
-vmargs
-Xms40m
-Xmx512m



2.2 開啟eclipse



[*]打開eclipse

$ eclipse &

  一開始會出現問你要將工作目錄放在哪裡:在這我們用預設值
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-1.png

  PS: 之後的說明則是在eclipse 上的介面操作


2.3 選擇視野



window ->
open pers.. ->
other.. ->
map/reduce
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/win-open-other.png

  設定要用 Map/Reduce 的視野 http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-2.png

  使用 Map/Reduce 的視野後的介面呈現 http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-3.png


2.4 建立專案




file ->
new ->
project ->
Map/Reduce ->
Map/Reduce Project ->
next

http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/file-new-project.png

  建立mapreduce專案(1)
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-4.png

  建立mapreduce專案的(2)

project name-> 輸入 : icas (隨意)
use default hadoop -> Configur Hadoop install... -> 輸入: "/opt/hadoop" -> ok
Finish


http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-4-2.png


2.5 設定專案

  由於剛剛建立了icas這個專案,因此eclipse已經建立了新的專案,出現在左邊視窗,右鍵點選該資料夾,並選properties


  Step1. 右鍵點選project的properties做細部設定

http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-5.png


  Step2. 進入專案的細部設定頁

  hadoop的javadoc的設定(1) http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-5-1.png


[*]java Build Path -> Libraries -> hadoop-0.20.0-ant.jar
[*]java Build Path -> Libraries -> hadoop-0.20.0-core.jar
[*]java Build Path -> Libraries -> hadoop-0.20.0-tools.jar

[*]以 hadoop-0.20.0-core.jar 的設定內容如下,其他依此類推



source ...-> 輸入:/opt/opt/hadoop-0.20.0/src
javadoc ...-> 輸入:file:/opt/hadoop/docs/api/




  Step3. hadoop的javadoc的設定完後(2)

http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-5-2.png


  Step4. java本身的javadoc的設定(3)



[*]javadoc location -> 輸入:file:/usr/lib/jvm/java-6-sun/docs/api/
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-5-3.png

  設定完後回到eclipse 主視窗

2.6 連接hadoop server



  Step1. 視窗右下角黃色大象圖示"Map/Reduce Locations tag" -> 點選齒輪右邊的藍色大象圖示:

http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-6.png


  Step2. 進行eclipse 與 hadoop 間的設定(2)

http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-6-1.png

Location Name -> 輸入:hadoop(隨意)
Map/Reduce Master -> Host-> 輸入:localhost
Map/Reduce Master -> Port-> 輸入:9001
DFS Master -> Host-> 輸入:9000
Finish



  設定完後,可以看到下方多了一隻藍色大象,左方展開資料夾也可以秀出在hdfs內的檔案結構 http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/2-6-2.png


三、 撰寫範例程式



[*]之前在eclipse上已經開了個專案icas,因此這個目錄在:

[*]/home/waue/workspace/icas


[*]在這個目錄內有兩個資料夾:

[*]src : 用來裝程式原始碼
[*]bin : 用來裝編譯後的class檔


[*]如此一來原始碼和編譯檔就不會混在一起,對之後產生jar檔會很有幫助
[*]在這我們編輯一個範例程式 : WordCount

3.1 mapper.java



[*]new



File ->
new ->
mapper

http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/file-new-mapper.png



[*]create
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/3-1.png

source folder-> 輸入: icas/src
Package : Sample
Name -> : mapper





[*]modify

package Sample;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class mapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}


  建立mapper.java後,貼入程式碼 http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/3-2.png


3.2 reducer.java



[*]new


[*]File -> new -> reducer
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/file-new-reducer.png



[*]create
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/3-3.png

source folder-> 輸入: icas/src
Package : Sample
Name -> : reducer





[*]modify

package Sample;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class reducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}




[*]File -> new -> Map/Reduce Driver
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/file-new-mr-driver.png


3.3 WordCount.java (main function)



[*]new
  建立WordCount.java,此檔用來驅動mapper 與 reducer,因此選擇 Map/Reduce Driver http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/3-4.png



[*]create

source folder-> 輸入: icas/src
Package : Sample
Name -> : WordCount.java





[*]modify

package Sample;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(mapper.class);
job.setCombinerClass(reducer.class);
job.setReducerClass(reducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}


  三個檔完成後並存檔後,整個程式建立完成 http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/3-5.png



[*]三個檔都存檔後,可以看到icas專案下的src,bin都有檔案產生,我們用指令來check

$ cd workspace/icas
$ ls src/Sample/
mapper.javareducer.javaWordCount.java
$ ls bin/Sample/
mapper.classreducer.classWordCount.class

四、測試範例程式



[*]由於hadoop 0.20 此版本的eclipse-plugin依舊不完整 ,如:

[*]右鍵點選WordCount.java -> run as -> run on Hadoop :沒有效果


http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/run-on-hadoop.png


[*]因此,4.1 提供一個eclipse 上解除 run-on-hadoop 封印的方法。而4.2 則是避開run-on-hadoop 這個功能,用command mode端指令的方法執行。

4.1 解除run-on-hadoop封印

  有一熱心的hadoop使用者提供一個能讓 run-on-hadoop 這個功能恢復的方法。
  原因是hadoop 的 eclipse-plugin 也許是用eclipse europa 這個版本開發的,而eclipse 的各版本 3.2 , 3.3, 3.4 間也都有或多或少的差異性存在。
  因此如果先用eclipse europa 來建立一個新專案,之後把europa的eclipse這個版本關掉,換用eclipse 3.4開啟,之後這個專案就能用run-on-mapreduce 這個功能囉!
  有興趣的話可以試試!(感謝逢甲資工所謝同學)

4.2 運用終端指令


4.2.1 產生Makefile 檔


$ cd /home/waue/workspace/icas/
$ gedit Makefile


[*]輸入以下Makefile的內容
JarFile="sample-0.1.jar"
MainFunc="Sample.WordCount"
LocalOutDir="/tmp/output"
all:help
jar:
jar -cvf ${JarFile} -C bin/ .
run:
hadoop jar ${JarFile} ${MainFunc} input output
clean:
hadoop fs -rmr output
output:
rm -rf ${LocalOutDir}
hadoop fs -get output ${LocalOutDir}
gedit ${LocalOutDir}/part-r-00000 &
help:
@echo "Usage:"
@echo " make jar   - Build Jar File."
@echo " make clean   - Clean up Output directory on HDFS."
@echo " make run   - Run your MapReduce code on Hadoop."
@echo " make output- Download and show output file"
@echo " make help    - Show Makefile options."
@echo " "
@echo "Example:"
@echo " make jar; make run; make output; make clean"

4.2.2 執行



[*]執行Makefile,可以到該目錄下,執行make [參數],若不知道參數為何,可以打make 或 make help
[*]make 的用法說明

$ cd /home/waue/workspace/icas/
$ make
Usage:
make jar   - Build Jar File.
make clean   - Clean up Output directory on HDFS.
make run   - Run your MapReduce code on Hadoop.
make output- Download and show output file
make help    - Show Makefile options.
Example:
make jar; make run; make output; make clean


[*]下面提供各種make 的參數

make jar



[*]1. 編譯產生jar檔

$ make jar

make run



[*]2. 跑我們的wordcount 於hadoop上

$ make run


[*]make run基本上能正確無誤的運作到結束,因此代表我們在eclipse編譯的程式可以順利在hadoop0.20的平台上運行。


[*]而回到eclipse視窗,我們可以看到下方視窗run完的job會呈現出來;左方視窗也多出output資料夾,part-r-00000就是我們的結果檔
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/4-1.png



[*]因為有設定完整的javadoc, 因此可以得到詳細的解說與輔助
http://trac.nchc.org.tw/cloud/raw-attachment/wiki/waue/2009/0617/4-2.png

make output



[*]3. 這個指令是幫助使用者將結果檔從hdfs下載到local端,並且用gedit來開啟你的結果檔

$ make output

make clean



[*]4. 這個指令用來把hdfs上的output資料夾清除。如果你還想要在跑一次make run,請先執行make clean,否則hadoop會告訴你,output資料夾已經存在,而拒絕工作喔!

$ make clean

五、結論



搭配eclipse ,我們可以更有效率的開發hadoop

hadoop 0.20 與之前的版本api以及設定都有些改變,因此hadoo
页: [1]
查看完整版本: hadoop 0.20 程式開發 eclipse plugin