想你了的他他 发表于 2016-12-13 09:48:29

Hadoop Pig学习笔记(一) 各种SQL在PIG中实现

  本博客属原创文章,转载请注明出处:http://guoyunsky.iyunv.com/blog/1317084
  欢迎加入Hadoop超级群: 180941958 
  我这里以Mysql 5.1.x为例,Pig的版本是0.8
  同时我将数据放在了两个文件,存放在/tmp/data_file_1和/tmp/data_file_2中.文件内容如下:
  tmp_file_1:

zhangsan231
lisi241
wangmazi301
meinv180
dama550
  tmp_file_2:

1a
23bb
50ccc
30dddd
66eeeee
  1.从文件导入数据
  1)Mysql (Mysql需要先创建表).
  CREATE TABLE TMP_TABLE(USER VARCHAR(32),AGE INT,IS_MALE BOOLEAN);
  CREATE TABLE TMP_TABLE_2(AGE INT,OPTIONS VARCHAR(50));   -- 用于Join
  LOAD DATA LOCAL INFILE '/tmp/data_file_1'  INTO TABLE TMP_TABLE ;
  LOAD DATA LOCAL INFILE '/tmp/data_file_2'  INTO TABLE TMP_TABLE_2;
  2)Pig
  tmp_table = LOAD '/tmp/data_file_1' USING PigStorage('\t') AS (user:chararray, age:int,is_male:int);
  tmp_table_2= LOAD '/tmp/data_file_2' USING PigStorage('\t') AS (age:int,options:chararray);
  2.查询整张表
  1)Mysql
  SELECT * FROM TMP_TABLE;
  2)Pig
  DUMP tmp_table;
  3. 查询前50行
  1)Mysql
  SELECT * FROM TMP_TABLE LIMIT 50;
  2)Pig
  tmp_table_limit = LIMIT tmp_table 50;
  DUMP tmp_table_limit; 
  4.查询某些列
  1)Mysql
  SELECT USER FROM TMP_TABLE;
  2)Pig
  tmp_table_user = FOREACH tmp_table GENERATE user;
  DUMP tmp_table_user;
  5. 给列取别名
  1)Mysql
  SELECT USER AS USER_NAME,AGE AS USER_AGE FROM TMP_TABLE;
  2)Pig
  tmp_table_column_alias = FOREACH tmp_table GENERATE user AS user_name,age AS user_age;
  DUMP tmp_table_column_alias; 
  6.排序
  1)Mysql
  SELECT * FROM TMP_TABLE ORDER BY AGE;
  2)Pig
  tmp_table_order = ORDER tmp_table BY age ASC;
  DUMP tmp_table_order;
  7.条件查询
  1)Mysql
  SELECT * FROM TMP_TABLE WHERE AGE>20;
  2) Pig
  tmp_table_where = FILTER tmp_table by age > 20;
  DUMP tmp_table_where;
  8.内连接Inner Join
  1)Mysql
  SELECT * FROM TMP_TABLE A JOIN TMP_TABLE_2 B ON A.AGE=B.AGE;
  2)Pig
  tmp_table_inner_join = JOIN tmp_table BY age,tmp_table_2 BY age;
  DUMP tmp_table_inner_join;
  9.左连接Left  Join
  1)Mysql
  SELECT * FROM TMP_TABLE A LEFT JOIN TMP_TABLE_2 B ON A.AGE=B.AGE;
  2)Pig
  tmp_table_left_join = JOIN tmp_table BY age LEFT OUTER,tmp_table_2 BY age;
  DUMP tmp_table_left_join;
  10.右连接Right Join
  1)Mysql
  SELECT * FROM TMP_TABLE A RIGHT JOIN TMP_TABLE_2 B ON A.AGE=B.AGE;
  2)Pig
  tmp_table_right_join = JOIN tmp_table BY age RIGHT OUTER,tmp_table_2 BY age;
  DUMP tmp_table_right_join;
  11.全连接Full Join
  1)Mysql
  SELECT * FROM TMP_TABLE A  JOIN TMP_TABLE_2 B ON A.AGE=B.AGE
  UNION SELECT * FROM TMP_TABLE A LEFT JOIN TMP_TABLE_2 B ON A.AGE=B.AGE
  UNION SELECT * FROM TMP_TABLE A RIGHT JOIN TMP_TABLE_2 B ON A.AGE=B.AGE;
  2)Pig
  tmp_table_full_join = JOIN tmp_table BY age FULL OUTER,tmp_table_2 BY age;
  DUMP tmp_table_full_join;
  12.同时对多张表交叉查询
  1)Mysql
  SELECT * FROM TMP_TABLE,TMP_TABLE_2;
  2)Pig
  tmp_table_cross = CROSS tmp_table,tmp_table_2;
  DUMP tmp_table_cross;
  13.分组GROUP BY
  1)Mysql
  SELECT * FROM TMP_TABLE GROUP BY IS_MALE;
  2)Pig
  tmp_table_group = GROUP tmp_table BY is_male;
  DUMP tmp_table_group;
  14.分组并统计
  1)Mysql
  SELECT IS_MALE,COUNT(*) FROM TMP_TABLE GROUP BY IS_MALE;
  2)Pig
  tmp_table_group_count = GROUP tmp_table BY is_male;
  tmp_table_group_count = FOREACH tmp_table_group_count GENERATE group,COUNT($1);

              DUMP tmp_table_group_count;

 
  15.查询去重DISTINCT
  1)MYSQL
  SELECT DISTINCT IS_MALE FROM TMP_TABLE;
  2)Pig
  tmp_table_distinct = FOREACH tmp_table GENERATE is_male;
  tmp_table_distinct = DISTINCT tmp_table_distinct;
  DUMP  tmp_table_distinct;
更多文章、感悟、分享、勾搭,请用微信扫描:
页: [1]
查看完整版本: Hadoop Pig学习笔记(一) 各种SQL在PIG中实现