nginx 源码学习笔记(二十)—— event 模块(一) ——初始化
读完之前的学习笔记,相信已经对nginx的启动流程有了一定的认识,从这一节起我们想深入各个模块,学习各个模块的内的主要操作。本文来自于:http://blog.csdn.net/lengzijian/article/details/7598996
今天我们就来学习下event模块,在之前的启动里多次提到了调用各个模块的钩子函数,我们先来回忆一下关于event模块钩子函数的执行,也是event模块启动的步骤:
1.创建conf(creat_conf):
ngx_event_create_conf()
该方法,主要是创建了一个ngx_event_conf_t结构体,并且分配内存空间。
2.读取配置文件:
例如读取到的文件有如下行:
events {use epoll;worker_connections 10240;}
这个地方的events是一个block指令,在大括号内可以配置很多指令,这些指令定义在src/event/ngx_event.c中
static ngx_command_tngx_event_core_commands[] = {{ ngx_string("worker_connections"),NGX_EVENT_CONF|NGX_CONF_TAKE1,ngx_event_connections,0,0,NULL },...(此处省略){ ngx_string("connections"),NGX_EVENT_CONF|NGX_CONF_TAKE1,ngx_event_connections,0,0,NULL },{ ngx_string("use"),NGX_EVENT_CONF|NGX_CONF_TAKE1,ngx_event_use,0,0,NULL },ngx_null_command};
当解析到events是会回调如下函数:
src/event/ngx_event.cstatic char *ngx_events_block(ngx_conf_t *cf, ngx_command_t *cmd, void *conf){char *rv;void ***ctx;ngx_uint_t i;ngx_conf_t pcf;ngx_event_module_t *m;/* count the number of the event modules and set up their indices *///计算event模块数量,并且记录ngx_event_max_module = 0;for (i = 0; ngx_modules; i++) {if (ngx_modules->type != NGX_EVENT_MODULE) {continue;}ngx_modules->ctx_index = ngx_event_max_module++;}ctx = ngx_pcalloc(cf->pool, sizeof(void *));if (ctx == NULL) {return NGX_CONF_ERROR;}//为每一个event模块分配空间,用来保存响应配置结构的地址//共分配了ngx_event_max_module个空间*ctx = ngx_pcalloc(cf->pool, ngx_event_max_module * sizeof(void *));if (*ctx == NULL) {return NGX_CONF_ERROR;}*(void **) conf = ctx;for (i = 0; ngx_modules; i++) {if (ngx_modules->type != NGX_EVENT_MODULE) {continue;}m = ngx_modules->ctx;//循环调用每个模块的creat_conf钩子函数,用于创建配置结构if (m->create_conf) {(*ctx)->ctx_index] = m->create_conf(cf->cycle);if ((*ctx)->ctx_index] == NULL) {return NGX_CONF_ERROR;}}}pcf = *cf;cf->ctx = ctx;cf->module_type = NGX_EVENT_MODULE;cf->cmd_type = NGX_EVENT_CONF;//由于events是一个block指令,events域下还可以配置很多其他指令,//比如之前提过的use等,现在开始解析events block中的指令,完成初始化工作。rv = ngx_conf_parse(cf, NULL);*cf = pcf;if (rv != NGX_CONF_OK)return rv;for (i = 0; ngx_modules; i++) {if (ngx_modules->type != NGX_EVENT_MODULE) {continue;}m = ngx_modules->ctx;//循环执行每个event模块的init_conf函数,初始化配置结构if (m->init_conf) {rv = m->init_conf(cf->cycle, (*ctx)->ctx_index]);if (rv != NGX_CONF_OK) {return rv;}}}return NGX_CONF_OK;}
ngx_events_block()函数中最重要的一个过程就是调用ngx_conf_parse(cf, NULL),此处调用ngx_conf_parse()的作用就是完成配置文件中events{}这个block的解析,从而调用其下所有的配置指令的回调函数,完成解析配置文件的初始化工作。但是这里我个人有个问题,待问完前辈之后,在指明问题和答案******。
2.初始化conf(init_conf)
ngx_event_init_conf()
该方法,主要是初始化ngx_event_conf_t结构体。
3.ngx_event_module_init
从名字上看是模块的初始化操作,但是纵观各个模块源代码,发现很多模块都没有init回调函数。这里本人也在纠结为什么,希望在学完全部代码后,能够找到答案。
src/event/ngx_event.cstatic ngx_int_tngx_event_module_init(ngx_cycle_t *cycle){void ***cf;u_char *shared;size_t size, cl;ngx_shm_t shm;ngx_time_t *tp;ngx_core_conf_t *ccf;ngx_event_conf_t *ecf;//判断ngx_events_module是否调用过初始化conf操作cf = ngx_get_conf(cycle->conf_ctx, ngx_events_module);if (cf == NULL) {ngx_log_error(NGX_LOG_EMERG, cycle->log, 0,"no \"events\" section in configuration");return NGX_ERROR;}//获取ngx_event_core_module模块的配置结构ecf = (*cf);//查看是否是event中的模块,例如use 。。。。if (!ngx_test_config && ngx_process <= NGX_PROCESS_MASTER) {ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0,"using the \"%s\" event method", ecf->name);}//获取ngx_core_module模块的配置结构ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);//从ngx_core_module模块的配置结构中获取timer_resolution参数ngx_timer_resolution = ccf->timer_resolution;#if !(NGX_WIN32){ngx_int_t limit;struct rlimitrlmt;//获取当前进程能够打开的最大文件数 man getrlimitif (getrlimit(RLIMIT_NOFILE, &rlmt) == -1) {ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,"getrlimit(RLIMIT_NOFILE) failed, ignored");} else {//如果ngx_event_core_module模块连接数大于当前(软)限制//并且ngx_core_module最大连接数无限制//或者ngx_event_core_module连接数大于ngx_core_module最大连接数if (ecf->connections > (ngx_uint_t) rlmt.rlim_cur&& (ccf->rlimit_nofile == NGX_CONF_UNSET|| ecf->connections > (ngx_uint_t) ccf->rlimit_nofile)){limit = (ccf->rlimit_nofile == NGX_CONF_UNSET) ?(ngx_int_t) rlmt.rlim_cur : ccf->rlimit_nofile;ngx_log_error(NGX_LOG_WARN, cycle->log, 0,"%ui worker_connections are more than ""open file resource limit: %i",ecf->connections, limit);}}}#endif /* !(NGX_WIN32) *///如果关闭了master进程,就返回//因为关闭了master进程就是单进程工作方式,//之后的操作时创建共享内存实现锁等工作,单进程不需要。if (ccf->master == 0) {return NGX_OK;}//如果已经存在accept互斥体了,不需要再重复创建了if (ngx_accept_mutex_ptr) {return NGX_OK;}/* cl should be equal or bigger than cache line size */cl = 128;//这里创建size大小的共享内存,这块共享内存将被均分成三段size = cl /* ngx_accept_mutex */+ cl /* ngx_connection_counter */+ cl; /* ngx_temp_number *///准备共享内存,大小为size,命名nginx_shared_zone,shm.size = size;shm.name.len = sizeof("nginx_shared_zone");shm.name.data = (u_char *) "nginx_shared_zone";shm.log = cycle->log;//创建共享内存,起始地址保存在shm.addrif (ngx_shm_alloc(&shm) != NGX_OK) {return NGX_ERROR;}//获取起始地址保存shared = shm.addr;//accept互斥体取得共享内存的第一段cl大小内存ngx_accept_mutex_ptr = (ngx_atomic_t *) shared;ngx_accept_mutex.spin = (ngx_uint_t) -1;/*创建accept互斥体accept互斥体的实现依赖是否支持原子操作,如果有相应的原子操作;就是用取得的这段共享内存来实现accept互斥体;否则,将使用文件锁来实现accept互斥体。accept互斥体的作用是:避免惊群和实现worker进程的负载均衡。*/if (ngx_shmtx_create(&ngx_accept_mutex, shared, cycle->lock_file.data)!= NGX_OK){return NGX_ERROR;}//获取内存的第二段cl大小的地址ngx_connection_counter = (ngx_atomic_t *) (shared + 1 * cl);(void) ngx_atomic_cmp_set(ngx_connection_counter, 0, 1);ngx_log_debug2(NGX_LOG_DEBUG_EVENT, cycle->log, 0,"counter: %p, %d",ngx_connection_counter, *ngx_connection_counter);//获取内存的第三段cl大小的地址ngx_temp_number = (ngx_atomic_t *) (shared + 2 * cl);tp = ngx_timeofday();ngx_random_number = (tp->msec << 16) + ngx_pid;return NGX_OK;}
4.ngx_event_process_init
在之前的worker进程分析中有提到过,当创建了一个worker进程后,worker进程首先就会做进程的初始化工作,此时会调用ngx_event_process_init函数。
src/event/ngx_event.cstatic ngx_int_tngx_event_process_init(ngx_cycle_t *cycle){ngx_uint_t m, i;ngx_event_t *rev, *wev;ngx_listening_t *ls;ngx_connection_t *c, *next, *old;ngx_core_conf_t *ccf;ngx_event_conf_t *ecf;ngx_event_module_t*module;//和之前一样,获取响应模块的配置结构ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);ecf = ngx_event_get_conf(cycle->conf_ctx, ngx_event_core_module);//master进程打开,worker进程大于1,已经创建了accept_mutex//才打开accept互斥体if (ccf->master && ccf->worker_processes > 1 && ecf->accept_mutex) {ngx_use_accept_mutex = 1; //使用互斥体ngx_accept_mutex_held = 0; //是否获得accept互斥体ngx_accept_mutex_delay = ecf->accept_mutex_delay;//争抢互斥体失败后,等待下次争抢时间间隔} else {ngx_use_accept_mutex = 0;}#if (NGX_THREADS)//线程先不讲#endif//初始化计数器,此处将会创建一颗红黑树,来维护计时器,之后会详细讲解if (ngx_event_timer_init(cycle->log) == NGX_ERROR) {return NGX_ERROR;}for (m = 0; ngx_modules; m++) {//这里之前讲过,跳过非NGX_EVENT_MODULE模块if (ngx_modules->type != NGX_EVENT_MODULE) {continue;}//非use配置指令指定的模块跳过,linux默认epollif (ngx_modules->ctx_index != ecf->use) {continue;}module = ngx_modules->ctx;/*调用具体时间模块的init函数由于nginx实现了很多事件模块,比如:epoll、poll、select、dqueue、aio(这些模块位于src/event/modules目录中),所以nginx对时间模块进行了一层抽象,方便了不同的系统使用不同的事件模型,也便于扩展新的时间模型,我们的重点应该放在epoll上。此处的init回调,其实就是调用了ngx_epoll_init函数。module->actions结构封装了epoll的所有接口函数。nginx就是通过actions结构将epoll注册到事件抽象层中。actions的类型是ngx_event_action_t,位于src/event/ngx_event.h这些具体的内容会在下一节中重点讲解。*/if (module->actions.init(cycle, ngx_timer_resolution) != NGX_OK) {/* fatal */exit(2);}break;}//此处省略部分内容//创建全局的ngx_connection_t数组,保存所有的connection//由于这个过程是在各个worker进程中执行的,所以每个worker都有自己的connection数组cycle->connections =ngx_alloc(sizeof(ngx_connection_t) * cycle->connection_n, cycle->log);if (cycle->connections == NULL) {return NGX_ERROR;}c = cycle->connections;//创建一个读事件数组cycle->read_events = ngx_alloc(sizeof(ngx_event_t) * cycle->connection_n,cycle->log);if (cycle->read_events == NULL) {return NGX_ERROR;}rev = cycle->read_events;for (i = 0; i < cycle->connection_n; i++) {rev.closed = 1;rev.instance = 1;#if (NGX_THREADS)rev.lock = &c.lock;rev.own_lock = &c.lock;#endif}//创建一个写事件数组cycle->write_events = ngx_alloc(sizeof(ngx_event_t) * cycle->connection_n,cycle->log);if (cycle->write_events == NULL) {return NGX_ERROR;}wev = cycle->write_events;for (i = 0; i < cycle->connection_n; i++) {wev.closed = 1;#if (NGX_THREADS)wev.lock = &c.lock;wev.own_lock = &c.lock;#endif}i = cycle->connection_n;next = NULL;//初始化整个connection数组do {i--;c.data = next;c.read = &cycle->read_events;c.write = &cycle->write_events;c.fd = (ngx_socket_t) -1;next = &c;#if (NGX_THREADS)c.lock = 0;#endif} while (i);cycle->free_connections = next;cycle->free_connection_n = cycle->connection_n;/* for each listening socket *///为每个监听套接字从connection数组中分配一个连接,即一个slotls = cycle->listening.elts;for (i = 0; i < cycle->listening.nelts; i++) {//从conneciton中取得一个新的连接soltc = ngx_get_connection(ls.fd, cycle->log);if (c == NULL) {return NGX_ERROR;}c->log = &ls.log;c->listening = &ls;ls.connection = c;rev = c->read;rev->log = c->log;rev->accept = 1; //读时间发生,调用accept#if (NGX_HAVE_DEFERRED_ACCEPT)//省略#endifif (!(ngx_event_flags & NGX_USE_IOCP_EVENT)) {if (ls.previous) {/** delete the old accept events that were bound to* the old cycle read events array*/old = ls.previous->connection;if (ngx_del_event(old->read, NGX_READ_EVENT, NGX_CLOSE_EVENT)== NGX_ERROR){return NGX_ERROR;}old->fd = (ngx_socket_t) -1;}}//注册监听套接口毒事件的回调函数 ngx_event_acceptrev->handler = ngx_event_accept;//使用了accept_mutex,暂时不将监听套接字放入epoll中,而是//等到worker抢到accept互斥体后,再放入epoll,避免惊群的发生if (ngx_use_accept_mutex) {continue;}if (ngx_event_flags & NGX_USE_RTSIG_EVENT) {if (ngx_add_conn(c) == NGX_ERROR) {return NGX_ERROR;}} else {//没有使用accept互斥体,那么就将此监听套接字放入epoll中。if (ngx_add_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {return NGX_ERROR;}}#endif}return NGX_OK;}
到现在为止,事件驱动的初始化已经完成。
页:
[1]