gdrocket 发表于 2017-12-18 12:10:26

Hadoop MapReduce编程 API入门系列之统计学生成绩版本2(十八)

package zhouls.bigdata.myMapReduce.Gender;  

  
import java.io.IOException;
  
import org.apache.hadoop.conf.Configuration;
  
import org.apache.hadoop.conf.Configured;
  
import org.apache.hadoop.fs.FileSystem;
  
import org.apache.hadoop.fs.Path;
  
import org.apache.hadoop.io.Text;
  
import org.apache.hadoop.mapred.JobConf;
  
import org.apache.hadoop.mapreduce.Job;
  
import org.apache.hadoop.mapreduce.Mapper;
  
import org.apache.hadoop.mapreduce.Partitioner;
  
import org.apache.hadoop.mapreduce.Reducer;
  
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  
import org.apache.hadoop.util.Tool;
  
import org.apache.hadoop.util.ToolRunner;
  

/**  
*
  
* @function 统计不同年龄段内 男、女最高分数
  
*
  
*
  

*/  

  
/*
  
Alice<tab>23<tab>female<tab>45
  
Bob<tab>34<tab>male<tab>89
  
Chris<tab>67<tab>male<tab>97
  
Kristine<tab>38<tab>female<tab>53
  
Connor<tab>25<tab>male<tab>27
  
Daniel<tab>78<tab>male<tab>95
  
James<tab>34<tab>male<tab>79
  
Alex<tab>52<tab>male<tab>69
  
Nancy<tab>7<tab>female<tab>98
  
Adam<tab>9<tab>male<tab>37
  
Jacob<tab>7<tab>male<tab>23
  
Mary<tab>6<tab>female<tab>93
  
Clara<tab>87<tab>female<tab>72
  
Monica<tab>56<tab>female<tab>92
  
*/

  
public>  
/*
  
*
  
* @function Mapper 解析输入数据,然后按需求输出
  
* @input key=行偏移量 value=学生数据
  
* @output key=gender value=name+age+score
  
*
  
*/

  
public static>  
{
  
public void map(Object key, Text value, Context context) throws IOException, InterruptedException
  
{//拿Alice<tab>23<tab>female<tab>45
  
String[] tokens = value.toString().split("<tab>");//使用分隔符<tab>,将数据解析为数组 tokens
  
//得到Alice    23    female    45
  
//即tokens tokens tokens tokens
  
String gender = tokens.toString();//性别
  
String nameAgeScore = tokens + "\t" + tokens + "\t"+ tokens;
  
//输出 key=gender value=name+age+score
  
//输出 key=female value=Alice    +23+45
  
context.write(new Text(gender), new Text(nameAgeScore));//将 (female , Alice+ 23+ 45) 写入到context中
  
}
  
}

  
public static>  
{
  
/** Use {@link Object#hashCode()} to partition. */
  
@Override
  
public int getPartition(Text key, Text value,int numReduceTasks)
  
{
  
return (key.hashCode()) % numReduceTasks;
  
}
  

  
}
  
/**
  
*
  
* @function Partitioner 根据 age 选择 reduce 分区
  
*
  
*/

  
public static>  
{
  

  
@Override
  
public int getPartition(Text key, Text value, int numReduceTasks)
  
{
  
// TODO Auto-generated method stub
  
String[] nameAgeScore = value.toString().split("\t");
  
String age = nameAgeScore;//学生年龄
  
int ageInt = Integer.parseInt(age);//按年龄段分区
  

  
// 默认指定分区 0
  
if (numReduceTasks == 0)
  
return 0;
  

  
//年龄小于等于20,指定分区0
  
if (ageInt <= 20) {
  
return 0;
  
}
  
// 年龄大于20,小于等于50,指定分区1
  
if (ageInt > 20 && ageInt <= 50) {
  

  
return 1 % numReduceTasks;
  
}
  
// 剩余年龄,指定分区2
  
else
  
return 2 % numReduceTasks;
  
}
  
}
  

  
/**
  
*
  
* @function 定义Combiner 合并 Mapper 输出结果
  
*
  
*/

  
public static>  
{
  
private Text text = new Text();
  

  
public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
  
{
  
int maxScore = Integer.MIN_VALUE;
  
String name = " ";
  
String age = " ";
  
int score = 0;
  
for (Text val : values)
  
{
  
String[] valTokens = val.toString().split("\\t");
  
score = Integer.parseInt(valTokens);
  
if (score > maxScore)
  
{
  
name = valTokens;
  
age = valTokens;
  
maxScore = score;
  
}
  
}
  
text.set(name + "\t" + age + "\t" + maxScore);
  
context.write(key, text);
  
}
  
}
  

  
/*
  
*
  
* @function Reducer 统计出 不同年龄段、不同性别 的最高分
  
* input key=gender value=name+age+score
  
* output key=name value=age+gender+score
  
*
  
*/

  
static>  
{
  
@Override
  
public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
  
{
  
int maxScore = Integer.MIN_VALUE;
  
String name = " ";
  
String age = " ";
  
String gender = " ";
  
int score = 0;
  
// 根据key,迭代 values 集合,求出最高分
  
for (Text val : values)
  
{
  
String[] valTokens = val.toString().split("\\t");
  
score = Integer.parseInt(valTokens);
  
if (score > maxScore)
  
{
  
name = valTokens;
  
age = valTokens;
  
gender = key.toString();
  
maxScore = score;
  
}
  
}
  
context.write(new Text(name), new Text("age- " + age + "\t" + gender + "\tscore-" + maxScore));
  
}
  
}
  

  
/**
  
* @function 任务驱动方法
  
* @param args
  
* @return
  
* @throws Exception
  
*/
  
@Override
  
public int run(String[] args) throws Exception
  
{
  
// TODO Auto-generated method stub
  
Configuration conf = new Configuration();//读取配置文件
  

  
Path mypath = new Path(args);
  
FileSystem hdfs = mypath.getFileSystem(conf);
  
if (hdfs.isDirectory(mypath))
  
{
  
hdfs.delete(mypath, true);
  
}
  

  
@SuppressWarnings("deprecation")
  
Job job = new Job(conf, "gender");//新建一个任务
  
job.setJarByClass(Gender.class);//主类
  
job.setMapperClass(PCMapper.class);//Mapper
  
job.setReducerClass(PCReducer.class);//Reducer
  

  
job.setPartitionerClass(MyHashPartitioner.class);
  
//job.setPartitionerClass(PCPartitioner.class);//设置Partitioner类
  
job.setNumReduceTasks(3);// reduce个数设置为3
  

  
job.setMapOutputKeyClass(Text.class);//map 输出key类型
  
job.setMapOutputValueClass(Text.class);//map 输出value类型
  

  
job.setCombinerClass(PCCombiner.class);//设置Combiner类
  

  
job.setOutputKeyClass(Text.class);//输出结果 key类型
  
job.setOutputValueClass(Text.class);//输出结果 value 类型
  

  
FileInputFormat.addInputPath(job, new Path(args));// 输入路径
  
FileOutputFormat.setOutputPath(job, new Path(args));// 输出路径
  
job.waitForCompletion(true);//提交任务
  
return 0;
  
}
  
/**
  
* @function main 方法
  
* @param args
  
* @throws Exception
  
*/
  
public static void main(String[] args) throws Exception
  
{
  
//    String[] args0 = {
  
//    "hdfs://HadoopMaster:9000/gender/gender.txt",
  
//    "hdfs://HadoopMaster:9000/out/partition/" };
  

  
String[] args0 = {
  
"./data/gender/gender.txt",
  
"./out/gender" };
  

  

  
int ec = ToolRunner.run(new Configuration(),new Gender(), args0);
  
System.exit(ec);
  
}
  
}
页: [1]
查看完整版本: Hadoop MapReduce编程 API入门系列之统计学生成绩版本2(十八)