li26598296 发表于 2017-12-18 14:47:03

Hadoop MapReduce编程 API入门系列之网页流量版本1(二十一)

  不多说,直接上代码。
  对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件。








  代码
  package zhouls.bigdata.myMapReduce.areapartition;
  import java.io.DataInput;
  import java.io.DataOutput;
  import java.io.IOException;
  import org.apache.hadoop.io.Writable;
  import org.apache.hadoop.io.WritableComparable;

  public>  private String phoneNB;
  private long up_flow;
  private long d_flow;
  private long s_flow;
  //在反序列化时,反射机制需要调用空参构造函数,所以显示定义了一个空参构造函数
  public FlowBean(){}
  //为了对象数据的初始化方便,加入一个带参的构造函数
  public FlowBean(String phoneNB, long up_flow, long d_flow) {
  this.phoneNB = phoneNB;
  this.up_flow = up_flow;
  this.d_flow = d_flow;
  this.s_flow = up_flow + d_flow;
  }
  public String getPhoneNB() {
  return phoneNB;
  }
  public void setPhoneNB(String phoneNB) {
  this.phoneNB = phoneNB;
  }
  public long getUp_flow() {
  return up_flow;
  }
  public void setUp_flow(long up_flow) {
  this.up_flow = up_flow;
  }
  public long getD_flow() {
  return d_flow;
  }
  public void setD_flow(long d_flow) {
  this.d_flow = d_flow;
  }
  public long getS_flow() {
  return s_flow;
  }
  public void setS_flow(long s_flow) {
  this.s_flow = s_flow;
  }
  //将对象数据序列化到流中
  public void write(DataOutput out) throws IOException {
  out.writeUTF(phoneNB);
  out.writeLong(up_flow);
  out.writeLong(d_flow);
  out.writeLong(s_flow);
  }
  //从数据流中反序列出对象的数据
  //从数据流中读出对象字段时,必须跟序列化时的顺序保持一致
  public void readFields(DataInput in) throws IOException {
  phoneNB = in.readUTF();
  up_flow = in.readLong();
  d_flow = in.readLong();
  s_flow = in.readLong();
  }
  @Override
  public String toString() {
  return "" + up_flow + "\t" +d_flow + "\t" + s_flow;
  }
  public int compareTo(FlowBean o) {
  return s_flow>o.getS_flow()?-1:1;
  }
  }
  package zhouls.bigdata.myMapReduce.areapartition;
  import java.util.HashMap;
  import org.apache.hadoop.mapreduce.Partitioner;

  public>  private static HashMap<String,Integer> areaMap = new HashMap<>();
  static{
  areaMap.put("135", 0);
  areaMap.put("136", 1);
  areaMap.put("137", 2);
  areaMap.put("138", 3);
  areaMap.put("139", 4);
  }
  @Override
  public int getPartition(KEY key, VALUE value, int numPartitions) {
  //从key中拿到手机号,查询手机归属地字典,不同的省份返回不同的组号
  int areaCoder= areaMap.get(key.toString().substring(0, 3))==null?5:areaMap.get(key.toString().substring(0, 3));
  return areaCoder;
  }
  }
  package zhouls.bigdata.myMapReduce.areapartition;
  import java.io.IOException;
  import org.apache.commons.lang.StringUtils;
  import org.apache.hadoop.conf.Configuration;
  import org.apache.hadoop.fs.Path;
  import org.apache.hadoop.io.LongWritable;
  import org.apache.hadoop.io.Text;
  import org.apache.hadoop.mapreduce.Job;
  import org.apache.hadoop.mapreduce.Mapper;
  import org.apache.hadoop.mapreduce.Reducer;
  import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  import org.apache.hadoop.util.Tool;
  import org.apache.hadoop.util.ToolRunner;
  import zhouls.bigdata.myMapReduce.areapartition.FlowBean;
  /**
  * 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件
  * 需要自定义改造两个机制:
  * 1、改造分区的逻辑,自定义一个partitioner
  * 2、自定义reduer task的并发任务数
  *
  *
  *
  */

  public>
  public static>  @Override
  protected void map(LongWritable key, Text value,Context context)
  throws IOException, InterruptedException {
  //拿一行数据
  String line = value.toString();
  //切分成各个字段
  String[] fields = StringUtils.split(line, "\t");
  //拿到我们需要的字段
  String phoneNB = fields;
  long u_flow = Long.parseLong(fields);
  long d_flow = Long.parseLong(fields);
  //封装数据为kv并输出
  context.write(new Text(phoneNB), new FlowBean(phoneNB,u_flow,d_flow));
  }
  }

  public static>  @Override
  protected void reduce(Text key, Iterable<FlowBean> values,Context context)
  throws IOException, InterruptedException {
  long up_flow_counter = 0;
  long d_flow_counter = 0;
  for(FlowBean bean: values){
  up_flow_counter += bean.getUp_flow();
  d_flow_counter += bean.getD_flow();
  }
  context.write(key, new FlowBean(key.toString(), up_flow_counter, d_flow_counter));
  }
  }
  public int run(String[] arg0) throws Exception{
  Configuration conf = new Configuration();
  Job job = Job.getInstance(conf);
  job.setJarByClass(FlowSumArea.class);
  job.setMapperClass(FlowSumAreaMapper.class);
  job.setReducerClass(FlowSumAreaReducer.class);
  //设置我们自定义的分组逻辑定义
  job.setPartitionerClass(AreaPartitioner.class);
  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(FlowBean.class);
  //设置reduce的任务并发数,应该跟分组的数量保持一致
  job.setNumReduceTasks(1);
  FileInputFormat.addInputPath(job, new Path(arg0));// 文件输入路径
  FileOutputFormat.setOutputPath(job, new Path(arg0));// 文件输出路径
  job.waitForCompletion(true);
  return 0;
  }
  public static void main(String[] args) throws Exception {
  //集群路径   
  //      String[] args0 = { "hdfs://HadoopMaster:9000/flowSumArea/HTTP_20130313143750.dat",
  //               "hdfs://HadoopMaster:9000/out/flowSumArea"};
  //集群路径   
  String[] args0 = { "./data/flowSumArea/HTTP_20130313143750.dat",
  "./out/flowSumArea/"};   
  int ec = ToolRunner.run( new Configuration(), new FlowSumArea(), args0);
  System. exit(ec);
  }
  @Override
  public Configuration getConf() {
  // TODO Auto-generated method stub
  return null;
  }
  @Override
  public void setConf(Configuration arg0) {
  // TODO Auto-generated method stub
  }
  }
页: [1]
查看完整版本: Hadoop MapReduce编程 API入门系列之网页流量版本1(二十一)