15468 发表于 2018-8-13 07:04:29

简单比较Python的数据持久化操作

  Python中操作关系数据库最直接的就是用DB-API了,流程一般是:连接、执行SQL语句、提交、断开。以MySQL为例,下面是各步骤的代码示例:
  首先是连接:

Python代码

[*]% python
[*]>>> import MySQLdb
[*]>>> conn = MySQLdb.connect(host='localhost', user='root', passwd='python')
  

  
% python
  
>>> import MySQLdb
  
>>> conn = MySQLdb.connect(host='localhost', user='root', passwd='python')
  

  

  接着便可以执行语句了,但在执行SQL语句前要先获取指针:

Python代码

[*]>>> curs = conn.cursor( )
[*]>>> curs.execute('create database peopledb')
[*]1L
[*]>>> curs.execute('use peopledb')
[*]0L
[*]>>> tblcmd = 'create table people (name char(30), job char(10), pay int(4))'
[*]>>> curs.execute(tblcmd)
[*]0L
  

  
>>> curs = conn.cursor( )
  
>>> curs.execute('create database peopledb')
  
1L
  
>>> curs.execute('use peopledb')
  
0L
  
>>> tblcmd = 'create table people (name char(30), job char(10), pay int(4))'
  
>>> curs.execute(tblcmd)
  
0L
  

  

  添加数据:

Python代码

[*]>>> curs.execute('insert people values (%s, %s, %s)', ('Bob', 'dev', 5000))
[*]1L
[*]>>> curs.executemany('insert people values (%s, %s, %s)',
[*]...          [ ('Sue', 'mus', '70000'),
[*]...            ('Ann', 'mus', '60000')])
[*]2L
[*]>>> conn.commit( )
  

  
>>> curs.execute('insert people values (%s, %s, %s)', ('Bob', 'dev', 5000))
  
1L
  
>>> curs.executemany('insert people values (%s, %s, %s)',
  
...          [ ('Sue', 'mus', '70000'),
  
...            ('Ann', 'mus', '60000')])
  
2L
  
>>> conn.commit( )
  

  

  执行查询:

Python代码

[*]>>> curs.execute('select * from people')
[*]6L
[*]>>> curs.fetchall( )
[*](('Bob', 'dev', 5000L), ('Sue', 'mus', 70000L), ('Ann', 'mus', 60000L), ('Tom',
[*]'mgr', 100000L))
  

  
>>> curs.execute('select * from people')
  
6L
  
>>> curs.fetchall( )
  
(('Bob', 'dev', 5000L), ('Sue', 'mus', 70000L), ('Ann', 'mus', 60000L), ('Tom',
  
'mgr', 100000L))
  

  执行完数据库操作记得断开连接:

Python代码

[*]conn.close( )      # close, _ _del_ _ call rollback if changes not committed yet
  

  
conn.close( )      # close, _ _del_ _ call rollback if changes not committed yet
  

  如果数据结构不是很复杂,配合Python强大的列表解析能力,不用ORM框架也是很方便的;或者自己封装对象映射也不是很难。
  

  如果使用了Django框架,可以使用它自带的ORM工具来操作数据库。首先当然是编写实体类(或者叫模型)了:

Java代码

[*]from django.db import models
[*]
[*]class Musician(models.Model):
[*]    first_name = models.CharField(max_length=50)
[*]    last_name = models.CharField(max_length=50)
[*]    instrument = models.CharField(max_length=100)
[*]
[*]class Album(models.Model):
[*]    artist = models.ForeignKey(Musician)
[*]    name = models.CharField(max_length=100)
[*]    release_date = models.DateField()
[*]    num_stars = models.IntegerField()
  

  
from django.db import models
  

  
class Musician(models.Model):
  
first_name = models.CharField(max_length=50)
  
last_name = models.CharField(max_length=50)
  
instrument = models.CharField(max_length=100)
  

  
class Album(models.Model):
  
artist = models.ForeignKey(Musician)
  
name = models.CharField(max_length=100)
  
release_date = models.DateField()
  
num_stars = models.IntegerField()
  

  Python的代码已经很清楚了,类对应表,成员变量对应表的列,列属性由models.XXXField(...)定义。如果实体类没有显式定义主键,Django会默认加上一句:

Python代码

[*]id = models.AutoField(primary_key=True)
  

  
id = models.AutoField(primary_key=True)
  

  Django里可以这样定义枚举型数据:

Python代码

[*]class Person(models.Model):
[*]    GENDER_CHOICES = (
[*]      (u'M', u'Male'),
[*]      (u'F', u'Female'),
[*]    )
[*]    name = models.CharField(max_length=60)
[*]    gender = models.CharField(max_length=2, choices=GENDER_CHOICES)
  

  
class Person(models.Model):
  
GENDER_CHOICES = (
  
(u'M', u'Male'),
  
(u'F', u'Female'),
  
)
  
name = models.CharField(max_length=60)
  
gender = models.CharField(max_length=2, choices=GENDER_CHOICES)
  

  对于关联关系,在做列的映射定义时可以这么写:

Python代码

[*]poll = models.ForeignKey(Poll)
[*]sites = models.ManyToManyField(Site)
[*]place = models.OneToOneField(Place")
  

  
poll = models.ForeignKey(Poll)
  
sites = models.ManyToManyField(Site)
  
place = models.OneToOneField(Place")
  

  在Django里定义关联关系还有更多功能,详细的还是看官方文档吧~
  Django的Model基类中已经定义了基本的数据库操作,因为所有的实体类都是继承自Model类,所以也就有了这些操作。例如新建并保存一个person只需要这么做:

Python代码

[*]>>> p = Person(name="Fred Flinstone", gender="M")
[*]>>> p.save()
  

  
>>> p = Person(name="Fred Flinstone", gender="M")
  
>>> p.save()
  

  Django会通过查询对象的主键是否存在来决定该UPDATE还是INSERT,当然你也可以强制框架执行某种操作。如果你不满意框架自带的方法,可以重写它:

Python代码

[*]class Blog(models.Model):
[*]    name = models.CharField(max_length=100)
[*]    tagline = models.TextField()
[*]
[*]    def save(self, *args, **kwargs):
[*]      do_something()
[*]      super(Blog, self).save(*args, **kwargs) # Call the "real" save() method.
[*]      do_something_else()
  

  
class Blog(models.Model):
  
name = models.CharField(max_length=100)
  
tagline = models.TextField()
  

  
def save(self, *args, **kwargs):
  
do_something()
  
super(Blog, self).save(*args, **kwargs) # Call the "real" save() method.
  
do_something_else()
  

  发现没,Django里存取数据不需要那种session,最讨厌Hibernate里的session了,总是报“Session Closed”错误……
  

  Python还有一个独立的ORM框架——SQLAlchemy。功能更强大,支持的数据库也比Django自带的ORM工具要多。它有两种建立实体类的方法。
  一种是分开定义,再将表定义和类定义映射起来。首先是建立表的定义:

Python代码

[*]>>> from sqlalchemy import Table, Column, Integer, String, MetaData, ForeignKey
[*]>>> metadata = MetaData()
[*]>>> users_table = Table('users', metadata,
[*]...   Column('id', Integer, Sequence('user_id_seq'), primary_key=True),
[*]...   Column('name', String(50)),
[*]...   Column('fullname', String(50)),
[*]...   Column('password', String(12))
[*]... )
  

  
>>> from sqlalchemy import Table, Column, Integer, String, MetaData, ForeignKey
  
>>> metadata = MetaData()
  
>>> users_table = Table('users', metadata,
  
...   Column('id', Integer, Sequence('user_id_seq'), primary_key=True),
  
...   Column('name', String(50)),
  
...   Column('fullname', String(50)),
  
...   Column('password', String(12))
  
... )
  

  接着定义实体类:

Python代码

[*]>>> class User(object):
[*]...   def __init__(self, name, fullname, password):
[*]...         self.name = name
[*]...         self.fullname = fullname
[*]...         self.password = password
  


  
>>>>  
...   def __init__(self, name, fullname, password):
  
...         self.name = name
  
...         self.fullname = fullname
  
...         self.password = password
  

  这还没完,还要把他们映射起来:

Python代码

[*]>>> from sqlalchemy.orm import mapper
[*]>>> mapper(User, users_table)
  

  
>>> from sqlalchemy.orm import mapper
  
>>> mapper(User, users_table)
  

  这样的过程有点像Hibernate里将XML的Map文件和实体类的映射。Hibernate中还可以方便的直接用注释在实体类中完成与表的映射,当然SQLAlchemy也有直接的方法:

Python代码

[*]>>> from sqlalchemy.ext.declarative import declarative_base
[*]
[*]>>> Base = declarative_base()
[*]>>> class User(Base):
[*]...   __tablename__ = 'users'
[*]...
[*]...   id = Column(Integer, primary_key=True)
[*]...   name = Column(String)
[*]...   fullname = Column(String)
[*]...   password = Column(String)
  

  
>>> from sqlalchemy.ext.declarative import declarative_base
  

  
>>> Base = declarative_base()

  
>>>>  
...   __tablename__ = 'users'
  
...

  
...    >  
...   name = Column(String)
  
...   fullname = Column(String)
  
...   password = Column(String)
  

  作为一个独立的ORM框架,实体类的存取当然就不会像Django那样集成的那么完美了,SQLAlchemy里存取数据也是要Session的:

Python代码

[*]>>> from sqlalchemy.orm import sessionmaker
[*]>>> Session = sessionmaker(bind=engine)
  

  
>>> from sqlalchemy.orm import sessionmaker
  
>>> Session = sessionmaker(bind=engine)
  

  这里的engine对象需要这样建立:

Python代码

[*]>>> from sqlalchemy import create_engine
[*]>>> engine = create_engine('<span style=&quot;font-family: monospace; white-space: normal; color: rgb(51, 51, 51); line-height: 20px;&quot;>dialect+driver://user:password@host/dbname[?key=value..]</span>', echo=True)
  

  
>>> from sqlalchemy import create_engine
  
>>> engine = create_engine('dialect+driver://user:password@host/dbname[?key=value..]', echo=True)
  

  对于存取操作,如果是保存就这么写:

Python代码

[*]>>> ed_user = User('ed', 'Ed Jones', 'edspassword')
[*]>>> session.add(ed_user)
  

  
>>> ed_user = User('ed', 'Ed Jones', 'edspassword')
  
>>> session.add(ed_user)
  

  如果要查询,就是类似的这种形式:

Python代码

[*]>>> our_user = session.query(User).filter_by(name='ed').first()
  

  
>>> our_user = session.query(User).filter_by(name='ed').first()
  

  

  执行完一些数据操作,必要的时候要提交或是回滚:

Python代码

[*]>>> session.rollback()
[*]或者
[*]>>> session.commit()
  

  
>>> session.rollback()
  
或者
  
>>> session.commit()
  

  SQLAlchemy框架还有一个衍生产品——Elixir,在SQLAlchemy的基础上对其映射方式做了些封装,使得实体类的定义有点类似Django中的定义方式。
  以上便是这两天对Python中数据存储的一些学习记录。话说Django的ORM与它的其他模块结合的很紧密,不好单独使用;SQLAlchemy虽 然强大,但风格不太喜欢,所以下一步打算深入两个ORM框架的代码,看看他们是怎么实现的。一方面好抉择用哪一个,另外也可以看看在自己的应用中能否自己 做一个简单的ORM。
页: [1]
查看完整版本: 简单比较Python的数据持久化操作