雷锋 发表于 2018-10-29 12:01:33

Hadoop MapReduce(FlowCount) Java编程

  编写PhoneFlow程序,计算手机上行流量、下行流量以及总流量,数据如下:
  13685295623 122201
  13985295600 10211
  13885295622 22   101
  13785295633 12020
  1、FlowMapper:
  package com.hadoop.flow;
  import java.io.IOException;
  import org.apache.hadoop.io.LongWritable;
  import org.apache.hadoop.io.Text;
  import org.apache.hadoop.mapreduce.Mapper;
  import org.apache.commons.lang.StringUtils;

  public>  /**
  * 数据格式:
  * 13685295623 122201
  * 13985295600 10211
  * 13885295622 22   101
  * 13785295633 12020
  */
  @Override
  protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {
  String line=value.toString();
  String [] fields=StringUtils.split(line,"\t");
  String phoneNB=fields;
  long up_flow=Long.valueOf(fields);
  long d_flow=Long.valueOf(fields);
  context.write(new Text(phoneNB), new FlowBean(phoneNB,up_flow,d_flow));
  }
  }
  2、FlowReducer:
  package com.hadoop.flow;
  import java.io.IOException;
  import org.apache.hadoop.io.Text;
  import org.apache.hadoop.mapreduce.Reducer;

  public>  @Override
  protected void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException {
  long upflowC=0;
  long dflowD=0;
  for(FlowBean bean:values){
  upflowC+=bean.getUp_flow();
  dflowD+=bean.getD_flow();
  }
  context.write(key,new FlowBean(key.toString(),upflowC,dflowD));
  }
  }
  
  3、FlowRunner
  package com.hadoop.flow;
  import org.apache.hadoop.conf.Configuration;
  import org.apache.hadoop.conf.Configured;
  import org.apache.hadoop.fs.Path;
  import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  import org.apache.hadoop.mapreduce.Job;
  import org.apache.hadoop.util.Tool;
  import org.apache.hadoop.util.ToolRunner;
  import org.apache.hadoop.io.Text;

  public>  public int run(String[] args) throws Exception {
  Configuration conf=new Configuration();
  Job job=Job.getInstance(conf);
  job.setJarByClass(FlowRunner.class);
  job.setMapperClass(FlowMapper.class);
  job.setReducerClass(FlowReducer.class);
  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(FlowBean.class);
  job.setMapOutputKeyClass(Text.class);
  job.setMapOutputValueClass(FlowBean.class);
  FileInputFormat.setInputPaths(job,new Path(args));
  FileOutputFormat.setOutputPath(job,new Path(args));
  return job.waitForCompletion(true)?0:1;
  }
  public static void main(String[] args) throws Exception {
  ToolRunner.run(new Configuration(), new FlowRunner(), args);
  }
  }
  
  4、FlowBean :
  package com.hadoop.flow;
  import java.io.DataInput;
  import java.io.DataOutput;
  import java.io.IOException;
  import org.apache.hadoop.io.Writable;

  public>  private String phoneNB;
  private long up_flow;
  private long d_flow;
  private long s_flow;
  public FlowBean(){
  }
  public FlowBean (String phoneNB,long up_flow,long d_flow){
  this.phoneNB=phoneNB;
  this.up_flow=up_flow;
  this.d_flow=d_flow;
  this.s_flow=up_flow+d_flow;
  }
  public String getPhoneNB() {
  return phoneNB;
  }
  public void setPhoneNB(String phoneNB) {
  this.phoneNB = phoneNB;
  }
  public long getUp_flow() {
  return up_flow;
  }
  public void setUp_flow(long up_flow) {
  this.up_flow = up_flow;
  }
  public long getD_flow() {
  return d_flow;
  }
  public void setD_flow(long d_flow) {
  this.d_flow = d_flow;
  }
  public long getS_flow() {
  return s_flow;
  }
  public void setS_flow(long s_flow) {
  this.s_flow = s_flow;
  }
  //
  public void write(DataOutput out) throws IOException {
  out.writeUTF(phoneNB);
  out.writeLong(up_flow);
  out.writeLong(d_flow);
  out.writeLong(s_flow);
  }
  public void readFields(DataInput in) throws IOException {
  phoneNB= in.readUTF();
  up_flow=in.readLong();
  d_flow=in.readLong();
  s_flow=in.readLong();
  }
  @Override
  public String toString() {
  return up_flow+"   "+d_flow+"   "+"   "+s_flow;
  }
  }

页: [1]
查看完整版本: Hadoop MapReduce(FlowCount) Java编程