fjptec-xm 发表于 2018-10-30 10:57:26

hadoop 测试第一个mapreduce程序

  说明:测试hadoop自带的实例 wordcount程序(此程序统计每个单词在文件中出现的次数)
  2.6.0版本jar程序的路径是
  /usr/local/hadoop-2.6.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar
  一、在本地创建目录和文件
  创建目录:
  mkdir /home/hadoop/input
  cd /home/hadoop/input
  创建文件:
  touch wordcount1.txt
  touch wordcount2.txt
  二、添加内容
  echo "Hello World" > wordcount1.txt
  echo "Hello Hadoop" > wordcount2.txt
  三、在hdfs上创建input目录
  hadoop fs -mkdir /input
  四、拷贝文件到/input目录
  hadoop fs -put /home/hadoop/input/* /input
  五、执行程序
  hadoop jar /usr/local/hadoop-2.6.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount /input /output
  说明:wordcount为程序的主类名, /input输入目录/output 输出目录(输出目录不能存在)
  六、执行过程信息
  15/04/14 15:55:03 INFO client.RMProxy: Connecting to ResourceManager at hdnn140/192.168.152.140:8032
  15/04/14 15:55:04 INFO input.FileInputFormat: Total input paths to process : 2
  15/04/14 15:55:04 INFO mapreduce.JobSubmitter: number of splits:2
  15/04/14 15:55:05 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1428996061278_0002
  15/04/14 15:55:05 INFO impl.YarnClientImpl: Submitted application application_1428996061278_0002
  15/04/14 15:55:05 INFO mapreduce.Job: The url to track the job: http://hdnn140:8088/proxy/application_1428996061278_0002/
  15/04/14 15:55:05 INFO mapreduce.Job: Running job: job_1428996061278_0002
  15/04/14 15:55:17 INFO mapreduce.Job: Job job_1428996061278_0002 running in uber mode : false
  15/04/14 15:55:17 INFO mapreduce.Job:map 0% reduce 0%
  15/04/14 15:56:00 INFO mapreduce.Job:map 100% reduce 0%
  15/04/14 15:56:10 INFO mapreduce.Job:map 100% reduce 100%
  15/04/14 15:56:11 INFO mapreduce.Job: Job job_1428996061278_0002 completed successfully
  15/04/14 15:56:11 INFO mapreduce.Job: Counters: 49
  File System Counters
  FILE: Number of bytes read=55
  FILE: Number of bytes written=316738
  FILE: Number of read operations=0
  FILE: Number of large read operations=0
  FILE: Number of write operations=0
  HDFS: Number of bytes read=235
  HDFS: Number of bytes written=25
  HDFS: Number of read operations=9
  HDFS: Number of large read operations=0
  HDFS: Number of write operations=2
  Job Counters
  Launched map tasks=2
  Launched reduce tasks=1
  Data-local map tasks=2
  Total time spent by all maps in occupied slots (ms)=83088
  Total time spent by all reduces in occupied slots (ms)=7098
  Total time spent by all map tasks (ms)=83088
  Total time spent by all reduce tasks (ms)=7098
  Total vcore-seconds taken by all map tasks=83088
  Total vcore-seconds taken by all reduce tasks=7098
  Total megabyte-seconds taken by all map tasks=85082112
  Total megabyte-seconds taken by all reduce tasks=7268352
  Map-Reduce Framework
  Map input records=2
  Map output records=4
  Map output bytes=41
  Map output materialized bytes=61
  Input split bytes=210
  Combine input records=4
  Combine output records=4
  Reduce input groups=3
  Reduce shuffle bytes=61
  Reduce input records=4
  Reduce output records=3
  Spilled Records=8
  Shuffled Maps =2
  Failed Shuffles=0
  Merged Map outputs=2
  GC time elapsed (ms)=1649
  CPU time spent (ms)=4260
  Physical memory (bytes) snapshot=280866816
  Virtual memory (bytes) snapshot=2578739200
  Total committed heap usage (bytes)=244625408
  Shuffle Errors
  BAD_ID=0
  CONNECTION=0
  IO_ERROR=0
  WRONG_LENGTH=0
  WRONG_MAP=0
  WRONG_REDUCE=0
  File Input Format Counters
  Bytes Read=25
  File Output Format Counters
  Bytes Written=25
  七、完成后查看输出目录
  hadoop fs -ls /output
  八、查看输出结果
  hadoop fs -cat /output/part-r-00000
  九、完成

页: [1]
查看完整版本: hadoop 测试第一个mapreduce程序