xinhu1300 发表于 2019-1-30 11:28:17

spark 2.2.0 高可用搭建

  一、概述
  1.实验环境基于以前搭建的haoop HA;
  2.spark HA所需要的zookeeper环境前文已经配置过,此处不再重复。
  3.所需软件包为:scala-2.12.3.tgz、spark-2.2.0-bin-hadoop2.7.tar
  4.主机规划
  bd1
  bd2
  bd3
  Worker
  bd4
  bd5
  

  Master、Worker
  二、配置Scala
  1.解压并拷贝
# tar -zxf scala-2.12.3.tgz
# cp -r scala-2.12.3 /usr/local/  2.配置环境变量
# vim /etc/profile
export SCALA_HOME=/usr/local/scala
export PATH=:$SCALA_HOME/bin:$PATH
# source /etc/profile  3.验证
# scala -version
Scala code runner version 2.12.3 -- Copyright 2002-2017, LAMP/EPFL and Lightbend, Inc.  三、配置Spark
  1.解压并拷贝
# tar -zxf spark-2.2.0-bin-hadoop2.7.tgz
# cp spark-2.2.0-bin-hadoop2.7 /usr/local/spark2.配置环境变量
# vim /etc/profile
export SCALA_HOME=/usr/local/scala
export PATH=:$SCALA_HOME/bin:$PATH
# source /etc/profile  3.修改spark-env.sh    #文件不存在需要拷贝模板
# vim spark-env.sh
export JAVA_HOME=/usr/local/jdk
export HADOOP_HOME=/usr/local/hadoop
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export SCALA_HOME=/usr/local/scala
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=bd4:2181,bd5:2181 -Dspark.deploy.zookeeper.dir=/spark"
export SPARK_WORKER_MEMORY=1g
export SPARK_WORKER_CORES=2
export SPARK_WORKER_INSTANCES=1  4.修改spark-defaults.conf    #文件不存在需要拷贝模板
# vim spark-defaults.conf
spark.master                     spark://master:7077
spark.eventLog.enabled         true
spark.eventLog.dir               hdfs://master:/user/spark/history
spark.serializer               org.apache.spark.serializer.KryoSerializer  5.在HDFS文件系统中新建日志文件目录

hdfs dfs -mkdir -p /user/spark/history
hdfs dfs -chmod 777 /user/spark/history  6.修改slaves
# vim slaves
bd1
bd2
bd3
bd4
bd5  四、同步到其他主机

  1.使用scp同步Scala到bd2-bd5
scp -r /usr/local/scala root@bd2:/usr/local/
scp -r /usr/local/scala root@bd3:/usr/local/
scp -r /usr/local/scala root@bd4:/usr/local/
scp -r /usr/local/scala root@bd5:/usr/local/  2.同步Spark到bd2-bd5
scp -r /usr/local/spark root@bd2:/usr/local/
scp -r /usr/local/spark root@bd3:/usr/local/
scp -r /usr/local/spark root@bd4:/usr/local/
scp -r /usr/local/spark root@bd5:/usr/local/  五、启动集群并测试HA

  1.启动顺序为:zookeeper-->hadoop-->spark
  2.启动spark
  bd4:
# cd /usr/local/spark/sbin/
# ./start-all.sh
starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.master.Master-1-bd4.out
bd4: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd4.out
bd2: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd2.out
bd3: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd3.out
bd5: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd5.out
bd1: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd1.out
# jps
3153 DataNode
7235 Jps
3046 JournalNode
7017 Master
3290 NodeManager
7116 Worker
2958 QuorumPeerMain  bd5:

# ./start-master.sh
starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.master.Master-1-bd5.out
# jps
3584 NodeManager
5602 RunJar
3251 QuorumPeerMain
8564 Master
3447 DataNode
8649 Jps
8474 Worker
3340 JournalNodehttps://s1.运维网.com/wyfs02/M00/08/5F/wKiom1ngbGKTSzqWAABNL-D7A3g387.png
https://s1.运维网.com/wyfs02/M00/A7/16/wKioL1ngaa3zBO9dAABUzECiZA8588.png
  3.停掉bd4的Master进程
# kill -9 7017
# jps
3153 DataNode
7282 Jps
3046 JournalNode
3290 NodeManager
7116 Worker
2958 QuorumPeerMainhttps://s4.运维网.com/wyfs02/M01/A7/16/wKioL1ngamrTwPk4AAAoULSIJUo625.png
https://s5.运维网.com/wyfs02/M01/08/5F/wKiom1ngbSGAG_dIAABT_l1Fdcw311.png
  五、总结
  一开始时想把Master放到bd1和bd2上,但是启动Spark后发现两个节点上都是Standby。然后修改配置文件转移到bd4和bd5上,才顺利运行。换言之Spark HA的Master必须位于Zookeeper集群上才能正常运行,即该节点上要有JournalNode这个进程。



页: [1]
查看完整版本: spark 2.2.0 高可用搭建