ainila 发表于 2016-12-28 09:16:42

信息、分析-统计nginx日志的python实现 -by小雨

  本文是一篇关于信息、分析-的帖子
  老大置布的务任,要分析一个5G巨细的nginx log file,因为我的python也是刚学,所以探索了久很,才实现了这个需求,话废不多话,简略暴粗,直接上代码!
  功能分析:
  1、统计Top 100 拜访数次最多的ip,并表现地理位置信息!这个是用的淘宝的地址库返回的ip地理位置及运营商信息  淘宝ip地址库REST API
  注:这方地说明一下,log里录记的件文有的是段分发送给客户端,所以同一个ip可能只是拜访一次,但在log里表现了多条录记,在这里我就简略暴粗的把每一次都算作一个拜访录记!有待改良,其他学同也可以修改下,告诉我该应怎么识别多少条录记是一次整完的拜访!
  2、统计Top 100 量流最高ip,并表现地理位置信息!
  3、统计Top 100 拜访量流最高url表列! 
  4、log件文录记的总量流!
  上面上代码,有要需的学同直接拿去!这个脚本分析一个4G的log用时13分阁下,系统配置(16G内存)!
  (1)ip_location.py件文:利用淘宝ip地址库,返回ip地点家国,区域(份省),都会,运营商

ip_location.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# the script is used to query the location of every ip
import urllib
import json
#淘宝ip库接口
url = "http://ip.taobao.com/service/getIpInfo.php?ip="
def ip_location(ip):
data = urllib.urlopen(url + ip).read()
datadict=json.loads(data)
for oneinfo in datadict:
if "code" == oneinfo:
if datadict == 0:
return datadict["data"]["country"] + datadict["data"]["region"] + datadict["data"]["city"] + "\t\t" + datadict["data"]["isp"]



  (2)logparser.py件文:实现统计功能,详细见代码内释注!实现方法都很低级,毕竟是新手,谅见!

#!/usr/local/python
# -*- coding: utf-8 -*-
import os
import time
import re
import sys
import ip_location
"""定义一个间时类,可以选取要分析的间时段,如果没有指定间时段,则分析部全log"""
class TimeParser(object):
def __init__(self, re_time, str_time, period):
self.__re_time = re.compile(re_time)
self.__str_time = str_time
self.__period = period
def __get(self, line):
t= re.search(self.__re_time, line).group(0)
return time.mktime(time.strptime(t, self.__str_time))
def inPeriod(self, line):
t = self.__get(line)
return (t > time.mktime(time.strptime(self.__period, self.__str_time))
and t < time.mktime(time.strptime(self.__period, self.__str_time)))
class ParseLog(object):
def __init__(self, file, re_time, str_time, period):
self.ip_dict = {}
self.url_dict = {}
try:
self.domain, self.parsetime, self.suffix = file.split("_")
except:
self.domain = file.split(".")
self.parsetime = "unknown time"
#定义一个数函,用来统计量数和总量流,并存入到应相字典中
def Count(self):
#用TimeParser实例化CountTime
CountTime = TimeParser(re_time, str_time, period)
self.total_traffic = []
"""
以下for循环分析每一行,如果这一行不含包间时,就跳过,如果含包间时信息,且在所分析间时段内,
则统计ip和traffic,没有http_refer信息的行只录记ip,然后跳过!
"""
with open(file) as f:
for i, line in enumerate(f):
try:
if CountTime.inPeriod(line):
ip = line.split()
try:
traffic = re.findall(r'\d{3}\ [^0]\d+', line).split()]
except IndexError:
traffic = 0
try:
url = re.findall(r'GET\ .*\.*\ ', line).split()]
except IndexError:
url = "unknown"
else:
continue
except AttributeError:
continue
self.ip_dict.setdefault(ip, {'number':0, 'traffic':0})['number'] += 1
self.ip_dict.setdefault(ip, {'number':0, 'traffic':0})['traffic'] += int(traffic)
self.url_dict.setdefault(url, 0)
self.url_dict += int(traffic)
if not i % 1000000:
print "have processed " + str(i) + " lines !"
#统计总量流
                self.total_traffic.append(int(traffic))
total = sum(self.total_traffic)
#打印总量流巨细
print "******************************************************************"
print self.domain + " all the traffic in " + self.parsetime + " is below:"
print "total_traffic: %s" % str(total/1024/1024)+"MB"
"""定义两个字典,分离存储ip的量数和量流信息"""
def TopIp(self, number):
self.Count()
TopNumberIp = {}
TopTrafficIp = {}
#对字典值赋
for ip in self.ip_dict.keys():
TopNumberIp = self.ip_dict['number']
TopTrafficIp = self.ip_dict['traffic']
#按值从大到小的次序排序键
SortIpNo = sorted(TopNumberIp.items(), key=lambda e: e, reverse=True)
SortIpTraffic = sorted(TopTrafficIp.items(), key=lambda e: e, reverse=True)
#出输连接数top 100 ip的相干信息到件文TopIpNo.txt中
ipno = open('TopIpNo.txt', 'w+')
ipno.write(u"ip地址\t\t\t拜访数次\t\t家国/区域/都会\t\t\t运营商\n")
ipno.write("-------------------------------------------------------------------------------------------------\n")
for i in range(number):
try:
ipno.write(SortIpNo+"\t\t"+str(SortIpNo)+"\t\t\t"+ip_location.ip_location(SortIpNo)+"\n")
except:
continue
ipno.write("-------------------------------------------------------------------------------------------------\n")
ipno.close()
#出输量流top 100 ip的相干信息到件文iptraffic.txt中
iptr = open('iptraffic.txt', 'w+')
iptr.write(u"ip地址\t\t\t总量流(MB)\t\t家国/区域/都会\t\t\t运营商\n")
iptr.write("-------------------------------------------------------------------------------------------------\n")
for i in range(number):
try:
iptr.write(SortIpTraffic+"\t\t"+str(SortIpTraffic/1024/1024))
#记入地理信息
iptr.write("\t\t\t"+ip_location.ip_location(SortIpTraffic)+"\n")
except:
continue
iptr.write("-------------------------------------------------------------------------------------------------\n")
iptr.close()
def TopUrl(self, number):
SortUrlTraffic = sorted(self.url_dict.items(), key=lambda e: e, reverse=True)
#出输量流top 100 url相干信息到urltraffic.txt件文中
urtr = open('urltraffic.txt', 'w+')
urtr.write("Filename".ljust(75)+u"TotalTraffic(MB)"+"\n")
urtr.write("-----------------------------------------------------------------------------------------\n")
for i in range(number):
try:
urtr.write(SortUrlTraffic.ljust(80)+str(SortUrlTraffic/1024/1024)+"\n")
except:
continue
urtr.write("-----------------------------------------------------------------------------------------\n")
urtr.close()

#间时的正则和格式,一般不要需改更
re_time='\d{2}\/\w{3}\/\d{4}:\d{2}:\d{2}:\d{2}'
str_time='%d/%b/%Y:%H:%M:%S'
#定义分析的间时段
period=("16/Nov/2000:16:00:00", "16/Nov/2015:17:00:00")
#定义出输top number
number = 100
if __name__ == '__main__':
if len(sys.argv) < 2:
print 'no logfile specified!'
print "Usage: python logParser.py filename"
time.sleep(2)
sys.exit()
else:
file = sys.argv]
lp = ParseLog(file, re_time, str_time, period)
print
print "Start to parse the " + file + " struggling! please wait patiently!"
print
print "******************************************************************"
time.sleep(2)
lp.TopIp(number)
lp.TopUrl(number)

  用法:python  logparser.py  要分析的log件文名
  文章结束给大家分享下程序员的一些笑话语录: 古鸽是一种搜索隐禽,在中国快绝迹了…初步的研究表明,古鸽的离去,很可能导致另一种长着熊爪,酷似古鸽,却又习性不同的猛禽类——犤毒鸟
页: [1]
查看完整版本: 信息、分析-统计nginx日志的python实现 -by小雨