本文是一篇关于信息、分析-的帖子
老大置布的务任,要分析一个5G巨细的nginx log file,因为我的python也是刚学,所以探索了久很,才实现了这个需求,话废不多话,简略暴粗,直接上代码!
功能分析:
1、统计Top 100 拜访数次最多的ip,并表现地理位置信息!这个是用的淘宝的地址库返回的ip地理位置及运营商信息 淘宝ip地址库REST API
注: 这方地说明一下,log里录记的件文有的是段分发送给客户端,所以同一个ip可能只是拜访一次,但在log里表现了多条录记,在这里我就简略暴粗的把每一次都算作一个拜访录记!有待改良,其他学同也可以修改下,告诉我该应怎么识别多少条录记是一次整完的拜访!
2、统计Top 100 量流最高ip,并表现地理位置信息!
3、统计Top 100 拜访量流最高url表列!
4、log件文录记的总量流!
上面上代码,有要需的学同直接拿去!这个脚本分析一个4G的log用时13分阁下,系统配置(16G内存)!
(1)ip_location.py件文:利用淘宝ip地址库,返回ip地点家国,区域(份省),都会,运营商
ip_location.py
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# the script is used to query the location of every ip
import urllib
import json
# 淘宝ip库接口
url = " http://ip.taobao.com/service/getIpInfo.php?ip= "
def ip_location(ip):
data = urllib.urlopen(url + ip).read()
datadict =json.loads(data)
for oneinfo in datadict:
if " code " == oneinfo:
if datadict[oneinfo] == 0:
return datadict[" data " ][" country " ] + datadict[" data " ][" region " ] + datadict[" data " ][" city " ] + " \t\t " + datadict[" data " ][" isp " ]
(2)logparser.py件文:实现统计功能,详细见代码内释注!实现方法都很低级,毕竟是新手,谅见!
# !/usr/local/python
# -*- coding: utf-8 -*-
import os
import time
import re
import sys
import ip_location
""" 定义一个间时类,可以选取要分析的间时段,如果没有指定间时段,则分析部全log """
class TimeParser(object):
def __init__ (self, re_time, str_time, period):
self. __re_time = re.compile(re_time)
self. __str_time = str_time
self. __period = period
def __get (self, line):
t = re.search(self.__re_time , line).group(0)
return time.mktime(time.strptime(t, self.__str_time ))
def inPeriod(self, line):
t = self.__get (line)
return (t > time.mktime(time.strptime(self.__period [0], self.__str_time ))
and t < time.mktime(time.strptime(self.__period [1], self.__str_time )))
class ParseLog(object):
def __init__ (self, file, re_time, str_time, period):
self.ip_dict = {}
self.url_dict = {}
try :
self.domain, self.parsetime, self.suffix = file.split(" _ " )
except :
self.domain = file.split(" . " )[0]
self.parsetime = " unknown time "
# 定义一个数函,用来统计量数和总量流,并存入到应相字典中
def Count(self):
# 用TimeParser实例化CountTime
CountTime = TimeParser(re_time, str_time, period)
self.total_traffic = []
"""
以下for循环分析每一行,如果这一行不含包间时,就跳过,如果含包间时信息,且在所分析间时段内,
则统计ip和traffic,没有http_refer信息的行只录记ip,然后跳过!
"""
with open(file) as f:
for i, line in enumerate(f):
try :
if CountTime.inPeriod(line):
ip = line.split()[0]
try :
traffic = re.findall(r' \d{3}\ [^0]\d+ ' , line)[0].split()[1]
except IndexError:
traffic = 0
try :
url = re.findall(r' GET\ .*\.*\ ' , line)[0].split()[1]
except IndexError:
url = " unknown "
else :
continue
except AttributeError:
continue
self.ip_dict.setdefault(ip, {' number ' :0, ' traffic ' :0})[' number ' ] += 1
self.ip_dict.setdefault(ip, {' number ' :0, ' traffic ' :0})[' traffic ' ] += int(traffic)
self.url_dict.setdefault(url, 0)
self.url_dict[url] += int(traffic)
if not i % 1000000:
print " have processed " + str(i) + " lines ! "
# 统计总量流
self.total_traffic.append(int(traffic))
total = sum(self.total_traffic)
# 打印总量流巨细
print " ****************************************************************** "
print self.domain + " all the traffic in " + self.parsetime + " is below: "
print " total_traffic: %s " % str(total/1024/1024)+" MB "
""" 定义两个字典,分离存储ip的量数和量流信息 """
def TopIp(self, number):
self.Count()
TopNumberIp = {}
TopTrafficIp = {}
# 对字典值赋
for ip in self.ip_dict.keys():
TopNumberIp[ip] = self.ip_dict[ip][' number ' ]
TopTrafficIp[ip] = self.ip_dict[ip][' traffic ' ]
# 按值从大到小的次序排序键
SortIpNo = sorted(TopNumberIp.items(), key=lambda e: e[1], reverse=True)
SortIpTraffic = sorted(TopTrafficIp.items(), key=lambda e: e[1], reverse=True)
# 出输连接数top 100 ip的相干信息到件文TopIpNo.txt中
ipno = open(' TopIpNo.txt ' , ' w+ ' )
ipno.write(u " ip地址\t\t\t拜访数次\t\t家国/区域/都会\t\t\t运营商\n " )
ipno.write( " -------------------------------------------------------------------------------------------------\n " )
for i in range(number):
try :
ipno.write(SortIpNo[0] +" \t\t " +str(SortIpNo[1])+" \t\t\t " +ip_location.ip_location(SortIpNo[0])+" \n " )
except :
continue
ipno.write(" -------------------------------------------------------------------------------------------------\n " )
ipno.close()
# 出输量流top 100 ip的相干信息到件文iptraffic.txt中
iptr = open(' iptraffic.txt ' , ' w+ ' )
iptr.write(u " ip地址\t\t\t总量流(MB)\t\t家国/区域/都会\t\t\t运营商\n " )
iptr.write( " -------------------------------------------------------------------------------------------------\n " )
for i in range(number):
try :
iptr.write(SortIpTraffic[0] +" \t\t " +str(SortIpTraffic[1]/1024/1024))
# 记入地理信息
iptr.write(" \t\t\t " +ip_location.ip_location(SortIpTraffic[0])+" \n " )
except :
continue
iptr.write(" -------------------------------------------------------------------------------------------------\n " )
iptr.close()
def TopUrl(self, number):
SortUrlTraffic = sorted(self.url_dict.items(), key=lambda e: e[1], reverse=True)
# 出输量流top 100 url相干信息到urltraffic.txt件文中
urtr = open(' urltraffic.txt ' , ' w+ ' )
urtr.write( " Filename " .ljust(75)+u" TotalTraffic(MB) " +" \n " )
urtr.write( " -----------------------------------------------------------------------------------------\n " )
for i in range(number):
try :
urtr.write(SortUrlTraffic[0].ljust( 80)+str(SortUrlTraffic[1]/1024/1024)+" \n " )
except :
continue
urtr.write(" -----------------------------------------------------------------------------------------\n " )
urtr.close()
# 间时的正则和格式,一般不要需改更
re_time=' \d{2}\/\w{3}\/\d{4}:\d{2}:\d{2}:\d{2} '
str_time =' %d/%b/%Y:%H:%M:%S '
# 定义分析的间时段
period=(" 16/Nov/2000:16:00:00 " , " 16/Nov/2015:17:00:00 " )
# 定义出输top number
number = 100
if __name__ == ' __main__ ' :
if len(sys.argv) < 2:
print ' no logfile specified! '
print " Usage: python logParser.py filename "
time.sleep( 2)
sys.exit()
else :
file = sys.argv[1]
lp = ParseLog(file, re_time, str_time, period)
print
print " Start to parse the " + file + " struggling! please wait patiently! "
print
print " ****************************************************************** "
time.sleep( 2)
lp.TopIp(number)
lp.TopUrl(number)
用法:python logparser.py 要分析的log件文名
文章结束给大家分享下程序员的一些笑话语录: 古鸽是一种搜索隐禽,在中国快绝迹了…初步的研究表明,古鸽的离去,很可能导致另一种长着熊爪,酷似古鸽,却又习性不同的猛禽类——犤毒鸟
运维网声明
1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网 享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com