设为首页 收藏本站
查看: 804|回复: 0

[经验分享] 关于hadoop的maptask数量

[复制链接]

尚未签到

发表于 2016-12-7 10:05:58 | 显示全部楼层 |阅读模式
今天看hadoop的JobClient的源码,在JobClient的init(JobConfig)函数中当mapred.job.tracker的值为默认值或者"local"时,将JobConfig的mapred.map.tasks设置为了1。觉得是不是太武断了点,不过在看JobConfig.setNumMapTasks(int)的注释时发现是这样说的:
这个MapTask数量的值设置只是对hadoop框架的提示,并不起决定作用。
实际上map task的数量依赖于InputFormat的getSplits生成的InputSplit的数量。因此经常使用定制的InputFormat来准确的控制map task的数目。换句话说map的数目依赖于输入的总大小(输入的block数)。基于文件的InputFormat的主要功能就是根据输入文件的总大小将它切分为逻辑上的InputSplit。对于分块的大小,输入文件所在的文件系统的块大小是其上限,下限可以通过mapred.min.split.size来设置。因此如果有10TB的数据且块大小为128M,那么将会产生82000(我算的是81920)个map除非setNumMapTasks(int)设置得更多。(problem:如果map数设为了90000,那么多出来的map干什么了?没有数据了啊!难道什么都不做,待进一步分析)
对于一个合理的并行程度每个节点的map数量应该大约在10-100个(对于不太消耗cpu的map task 可以有300个)。需要注意的是Task的建立是需要时间的,因此在并行度许可的情况下应该使用尽量少的map来运行。

TaskSplitMetaInfo[] splits = createSplits(jobId);
if (numMapTasks != splits.length) {
throw new IOException("Number of maps in JobConf doesn't match number of " +
"recieved splits for job " + jobId + "! " +
"numMapTasks=" + numMapTasks + ", #splits=" + splits.length);
}
numMapTasks = splits.length;

这样看来map的数量与JobConfig的mapred.map.tasks的值没有关系,依据的是split的数目

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-310865-1-1.html 上篇帖子: hadoop API 学习小结(三) 下篇帖子: Hadoop任务调度机制
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表