设为首页 收藏本站
查看: 672|回复: 0

[经验分享] MongoDB: Hadoop Integerateion 1

[复制链接]

尚未签到

发表于 2016-12-5 09:39:49 | 显示全部楼层 |阅读模式
Hadoop and MongoDB Use Cases
  The following are some example deployments with MongoDB and Hadoop. The goal is to provide a high-level description of how MongoDB and Hadoop can fit together in a typical Big Data stack. In each of the following examples MongoDB is used as the “operational” real-time data store and Hadoop is used for offline batch data processing and analysis.

Batch Aggregation
  In several scenarios the built-in aggregation functionality provided by MongoDB is sufficient for analyzing your data. However in certain cases, significantly more complex data aggregation may be necessary. This is where Hadoop can provide a powerful framework for complex analytics.
  In this scenario data is pulled from MongoDB and processed within Hadoop via one or more MapReduce jobs. Data may also be brought in from additional sources within these MapReduce jobs to develop a multi-datasource solution. Output from these MapReduce jobs can then be written back to MongoDB for later querying and ad-hoc analysis. Applications built on top of MongoDB can now use the information from the batch analytics to present to the end user or to drive other downstream features.
  
DSC0000.png

Data Warehouse
  In a typical production scenario, your application’s data may live in multiple datastores, each with their own query language and functionality. To reduce complexity in these scenarios, Hadoop can be used as a data warehouse and act as a centralized repository for data from the various sources.
  In this situation, you could have periodic MapReduce jobs that load data from MongoDB into Hadoop. This could be in the form of “daily” or “weekly” data loads pulled from MongoDB via MapReduce. Once the data from MongoDB is available from within Hadoop, and data from other sources are also available, the larger dataset data can be queried against. Data analysts now have the option of using either MapReduce or Pig to create jobs that query the larger datasets that incorporate data from MongoDB.
  
DSC0001.png

ETL Data
  MongoDB may be the operational datastore for your application but there may also be other datastores that are holding your organization’s data. In this scenario it is useful to be able to move data from one datastore to another, either from your application’s data to another database or vice versa. Moving the data is much more complex than simply piping it from one mechanism to another, which is where Hadoop can be used.
  In this scenario, Map-Reduce jobs are used to extract, transform and load data from one store to another. Hadoop can act as a complex ETL mechanism to migrate data in various forms via one or more MapReduce jobs that pull the data from one store, apply multiple transformations (applying new data layouts or other aggregation) and loading the data to another store. This approach can be used to move data from or to MongoDB, depending on the desired result.
  
DSC0002.png

DSC0003.png

MongoDB Connector for Hadoop
  The MongoDB Connector for Hadoop is a plugin for Hadoop that provides the ability to use MongoDB as an input source and/or an output destination.
  The source code is available on github where you can find a more comprehensive readme.
  If you have questions please email the mongodb-user Mailing List. For any issues please file a ticket in Jira.

Installation
  The MongoDB Connector for Hadoop uses Gradle tool for compilation. To build, simply invoke the jar task as seen with the following command:

./gradlew jar




  The MongoDB Connector for Hadoop supports a number of Hadoop releases. You can change the Hadoop version supported by passing the hadoop_version parameter to gradle. For instance, to build against Apache Hadoop 2.2 use the following command:

./gradlew jar -Phadoop_version=2.2




  After building, you will need to place the “core” jar and the mongo-java-driver in the lib directory of each Hadoop server.
  For more complete install instructions please see the install instructions in the readme


  References
  http://docs.mongodb.org/ecosystem/tools/hadoop/
  http://docs.mongodb.org/ecosystem/use-cases/hadoop/
  http://www.mongodb.com/press/integration-hadoop-and-mongodb-big-data%E2%80%99s-two-most-popular-technologies-gets-significant

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-309879-1-1.html 上篇帖子: Eclipse Hadoop Development ENV Construction 下篇帖子: hadoop集群数据迁移
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表