设为首页 收藏本站
查看: 638|回复: 0

[经验分享] Moving Data in/out of Hadoop Filesystem

[复制链接]

尚未签到

发表于 2016-12-8 11:22:04 | 显示全部楼层 |阅读模式
  Hadoop has a number of built-in mechanisms that can facilitate ingress and egress operations, to name a few:


  • Embedded NameNode HTTP server
  • WebHDFS and Hadoop interfaces
  • Hbase built-in API, be specifically the org.apache.hadoop.hbase.mapreduce.TableInputFormat and org.apache.hadoop.hbase.mapreduce.TableOutputFormat
  • Hadoop fs utility
  • Oozie workflow can also be leveraged to move data in/out of HDFS periodically
  • Log collector such as Flume, scribe, Chukwa...
  • Sqoop to import/export data from/to HDFS and relational databases
  The first three are low-level utilities while the rest are high-level. These low-level mechanisms  don't provide complete systems to manage the entire ingress and egress process while the hig-level ones do. For ingress here I mean move data into HDFS from external filesystem, database, hbase etc.; for egress, I mean move data from external system into Hadoop HDFS.
  But in this blog post, what I most interested in is a third-party script which could be used to move data in/out of HDFS from external filesystem. It's called hdfs-file-splurper which is hosted on GitHub. It's distributed under Apache license, so you can get a copy of it source code via this link.
  With HDFS file slurper open source project, you can copy files of any format in/out of HDFS, but with log collector such as Flume, Chukwa or Scribe, you can only copy text file format. The HDFS file slurper was developed by Alex Holmes, who is also the author of Hadoop in Practice. It's an awesome book by the way. Here is brief demonstration of this useful project.



  • Case 1,  you want to move files in any format from external filesystem to HDFS, say, from the localhost directory /tmp/slurper/in to the HDFS directory /incoming/:
    shell$ cat conf/examples/basic.conf
    DATASOURCE_NAME = test
    SRC_DIR = file:/tmp/slurper/in
    WORK_DIR = file:/tmp/slurper/work
    COMPLETE_DIR = file:/tmp/slurper/complete
    ERROR_DIR = file:/tmp/slurper/error
    DEST_STAGING_DIR = hdfs:/incoming/stage
    DEST_DIR = hdfs:/incoming
     Run the Slurper in foreground mode in a console:
    shell$ bin/slurper.sh \
    --config-file /path/to/slurper/conf/examples/basic.conf
     In another console create an empty file and watch the Slurper do its stuff:
    shell$ echo "blocks of text" > /tmp/slurper/in/test.txt
     

  • Case 2, you want to move files of any format from HDFS to local filesystem.
    shell$ cat conf/exmaples/basic.conf
    SRC_DIR=hdfs:/tmp/slurper/in
    WORK_DIR=hdfs:/tmp/slurper/work
    COMPLETE_DIR=hdfs:/tmp/slurper/complete
    ERROR_DIR=hdfs:/tmp/slurper/error
    DEST_STAGING_DIR=file:/tmp/slurper/stage
    DEST_DIR=file:/tmp/slurper/dest
     Run Hadoop job to write output into the source directory, then see the Slurper do its job.
  Important features of HDFS file slurper:


  • After a successful file copy you can either remove the source file, or have it moved into another directory.
  • Destination files can be compressed as part of the write codec with any compression codec which extends org.apache.hadoop.io.compress.CompressionCodec.
  • Capability to write "done" file after completion of copy
  • Verify destination file post-copy with CRC32 checksum comparison with source
  • Ignores hidden files (filenames that start with ".")
  • Customizable destination via a script which can be called for every source file. Or alternatively let the utility know a single destination directory
  • Customizable pre-processing of file prior to transfer via script and all files are copied into that location.
  • A daemon mode which is compatible with inittab respawn
  • Multi-threaded data transfer
  For more information of this project, please visit its homepage on GitHub and get a copy of its source code.

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-311466-1-1.html 上篇帖子: 使用java api操作Hadoop文件 下篇帖子: 关于Hadoop中replication factor解惑
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表