设为首页 收藏本站
查看: 781|回复: 0

[经验分享] LVS的调度算法

[复制链接]
累计签到:1 天
连续签到:1 天
发表于 2015-9-5 09:28:36 | 显示全部楼层 |阅读模式
  LVS一共有10种调度算法。
Job Scheduling Algorithms in Linux Virtual Server
  This page describes the job scheduling algorithms implemented in Linux Virtual Server.

  • Round-Robin Scheduling
  • Weighted Round-Robin Scheduling
  • Least-Connection Scheduling
  • Weighted Least-Connection Scheduling
  • Locality-Based Least-Connection Scheduling
  • Locality-Based Least-Connection with Replication Scheduling
  • Destination Hashing Scheduling
  • Source Hashing Scheduling
  • Shortest Expected Delay Scheduling
  • Never Queue Scheduling


Round-Robin Scheduling
  The round-robin scheduling algorithm sends each incoming request to the next server in it's list. Thus in a three server cluster (servers A, B and C) request 1 would go to server A, request 2 would go to server B, request 3 would go to server C, and request 4 would go to server A, thus completing the cycling or 'round-robin' of servers. It treats all real servers as equals regardless of the number of incoming connections or response time each server is experiencing. Virtual Server provides a few advantages over traditional round-robin DNS. Round-robin DNS resolves a single domain to the different IP addresses, the scheduling granularity is host-based, and the caching of DNS queries hinders the basic algorithm, these factors lead to significant dynamic load imbalances among the real servers. The scheduling granularity of Virtual Server is network connection-based, and it is much superior to round-robin DNS due to the fine scheduling granularity.
Weighted Round-Robin Scheduling
  The weighted round-robin scheduling is designed to better handle servers with different processing capacities. Each server can be assigned a weight, an integer value that indicates the processing capacity. Servers with higher weights receive new connections first than those with less weights, and servers with higher weights get more connections than those with less weights and servers with equal weights get equal connections. For example, the real servers, A, B and C, have the weights, 4, 3, 2 respectively, a good scheduling sequence will be AABABCABC in a scheduling period (mod sum(Wi)). In the implementation of the weighted round-robin scheduling, a scheduling sequence will be generated according to the server weights after the rules of Virtual Server are modified. The network connections are directed to the different real servers based on the scheduling sequence in a round-robin manner.
  The weighted round-robin scheduling is better than the round-robin scheduling, when the processing capacity of real servers are different. However, it may lead to dynamic load imbalance among the real servers if the load of the requests vary highly. In short, there is the possibility that a majority of requests requiring large responses may be directed to the same real server.
  Actually, the round-robin scheduling is a special instance of the weighted round-robin scheduling, in which all the weights are equal.
Least-Connection Scheduling
  The least-connection scheduling algorithm directs network connections to the server with the least number of established connections. This is one of the dynamic scheduling algorithms; because it needs to count live connections for each server dynamically. For a Virtual Server that is managing a collection of servers with similar performance, least-connection scheduling is good to smooth distribution when the load of requests vary a lot. Virtual Server will direct requests to the real server with the fewest active connections.
  At a first glance it might seem that least-connection scheduling can also perform well even when there are servers of various processing capacities, because the faster server will get more network connections. In fact, it cannot perform very well because of the TCP's TIME_WAIT state. The TCP's TIME_WAIT is usually 2 minutes, during this 2 minutes a busy web site often receives thousands of connections, for example, the server A is twice as powerful as the server B, the server A is processing thousands of requests and keeping them in the TCP's TIME_WAIT state, but server B is crawling to get its thousands of connections finished. So, the least-connection scheduling cannot get load well balanced among servers with various processing capacities.
Weighted Least-Connection Scheduling
  The weighted least-connection scheduling is a superset of the least-connection scheduling, in which you can assign a performance weight to each real server. The servers with a higher weight value will receive a larger percentage of live connections at any one time. The Virtual Server Administrator can assign a weight to each real server, and network connections are scheduled to each server in which the percentage of the current number of live connections for each server is a ratio to its weight. The default weight is one.
  The weighted least-connections scheduling works as follows:
  Supposing there is n real servers, each server i has weight Wi (i=1,..,n), and alive connections Ci(i=1,..,n), ALL_CONNECTIONS is the sum of Ci (i=1,..,n), the next network connection will be directed to the server j, in which
  (Cj/ALL_CONNECTIONS)/Wj = min { (Ci/ALL_CONNECTIONS)/Wi } (i=1,..,n)
  Since the ALL_CONNECTIONS is a constant in this lookup, there is no need to divide Ci by ALL_CONNECTIONS, it can be optimized as
  Cj/Wj = min { Ci/Wi } (i=1,..,n)
  The weighted least-connection scheduling algorithm requires additional division than the least-connection. In a hope to minimize the overhead of scheduling when servers have the same processing capacity, both the least-connection scheduling and the weighted least-connection scheduling algorithms are implemented.
Locality-Based Least-Connection Scheduling
  The locality-based least-connection scheduling algorithm is for destination IP load balancing. It is usually used in cache cluster. This algorithm usually directs packet destined for an IP address to its server if the server is alive and under load. If the server is overloaded (its active connection numbers is larger than its weight) and there is a server in its half load, then allocate the weighted least-connection server to this IP address.
Locality-Based Least-Connection with Replication Scheduling
  The locality-based least-connection with replication scheduling algorithm is also for destination IP load balancing. It is usually used in cache cluster. It differs from the LBLC scheduling as follows: the load balancer maintains mappings from a target to a set of server nodes that can serve the target. Requests for a target are assigned to the least-connection node in the target's server set. If all the node in the server set are over loaded, it picks up a least-connection node in the cluster and adds it in the sever set for the target. If the server set has not been modified for the specified time, the most loaded node is removed from the server set, in order to avoid high degree of replication.
Destination Hashing Scheduling
  The destination hashing scheduling algorithm assigns network connections to the servers through looking up a statically assigned hash table by their destination IP addresses.
Source Hashing Scheduling
  The source hashing scheduling algorithm assigns network connections to the servers through looking up a statically assigned hash table by their source IP addresses.
Shortest Expected Delay Scheduling
  The shortest expected delay scheduling algorithm assigns network connections to the server with the shortest expected delay. The expected delay that the job will experience is (Ci + 1) / Ui if sent to the ith server, in which Ci is the number of connections on the the ith server and Ui is the fixed service rate (weight) of the ith server.
Never Queue Scheduling
  The never queue scheduling algorithm adopts a two-speed model. When there is an idle server available, the job will be sent to the idle server, instead of waiting for a fast one. When there is no idle server available, the job will be sent to the server that minimize its expected delay (The Shortest Expected Delay scheduling algorithm).

  $Id: scheduling.html,v 1.6 2
  
  
  参考文档:http://www.linuxvirtualserver.org/docs/scheduling.html

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-109599-1-1.html 上篇帖子: lvs的简单实现 下篇帖子: Linux Enterprise Cluster Notes
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表