设为首页 收藏本站
查看: 2185|回复: 0

[经验分享] 图论

[复制链接]

尚未签到

发表于 2015-9-11 13:57:27 | 显示全部楼层 |阅读模式






Currency Exchange




Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 19881 Accepted: 7114



Description




Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.


Input




The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104.


Output




If Nick can increase his wealth, output YES, in other case output NO to the output file.


Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00



Sample Output
YES

Source




Northeastern Europe 2001, Northern Subregion


  
  Mean:
  
  你有一些古币,现在你要用这些古币去兑换成其他钱币。这个城市里有N个兑换点,每个兑换点包括:
A----钱币A
B----钱币B
Rab--A兑换为B的比例
Cab--A兑换为B的手续费
Rba--B兑换为A的比例
Cba--B兑换为A的手续费
现在你有编号为S的这种古币,你将用这些古币去进行一系列的兑换,最终还是要兑换回古币。你想知道能不能通过一系列兑换来增加自身的古币。
N--钱币的种类总数(结点数)
M--兑换点的数量(边的条数)
S--你的货币种类标识(起点&终点)
V--你现在身上货币的数目
  
  
  analyse:
  判断图中是否存在正权回路。
  使用spfa来不断迭代求最大路径,如果这个过程中某个点的迭代次数超过了n次,那么一定存在正权回路。
  其实一般情况下每个点的迭代次数不会超过2,所以这题把n改为3也能过,当然如果存在正权回路的话一定会超过n,所以在不卡时间的情况下,就用n来判断保险一点。
  
  Time complexity:O(m*k),k为每个点平均迭代次数
  
  Source code:
  



//Memory   Time
//  164K     0MS
// by : Snarl_jsb
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<iomanip>
#include<string>
#include<climits>
#include<cmath>
#define MAXV 110
#define MAXE 110<<1
#define LL long long
using namespace std;
int n,m,sta;
float num;
int vis[MAXV];
float dis[MAXV];
int cnt[MAXV];
namespace Adj
{
struct Edge
{
int to,next;
float rate,cost;
};
Edge edge[MAXE];
int top;
int head[MAXV];
void init()
{
top=1;
memset(head,0,sizeof(head));
}
void addEdge(int u,int v,float rate,float cost)
{
edge[top].to=v;
edge[top].rate=rate;
edge[top].cost=cost;
edge[top].next=head;
head=top++;
}
}
using namespace Adj;
bool spfa()
{
for(int i=1;i<=n;i++)
cnt=vis=0,dis=0.0;
queue<int>Q;
Q.push(sta);
vis[sta]=1;
dis[sta]=num;
while(!Q.empty())
{
int now=Q.front();
Q.pop();
vis[now]=0;
for(int i=head[now];i;i=edge.next)
{
int son=edge.to;
float tmp=(dis[now]-edge.cost)*edge.rate*1.0;
if(dis[son]<tmp)
{
dis[son]=tmp;
if(!vis[son])
{
Q.push(son);
vis[son]=1;
}
cnt[son]++;
if(cnt[son]>3)  //   某个结点迭代次数超过了n次,存在正权回路
return false;
}
}
}
return true;
}
int main()
{
//    freopen("cin.txt","r",stdin);
//    freopen("cout.txt","w",stdout);
scanf("%d %d %d %f",&n,&m,&sta,&num);
Adj:: init();
int a,b;
float r1,c1,r2,c2;
while(m--)
{
scanf("%d %d %f %f %f %f",&a,&b,&r1,&c1,&r2,&c2);
Adj:: addEdge(a,b,r1,c1);
Adj:: addEdge(b,a,r2,c2);
}
if(!spfa())
puts("YES");
else
puts("NO");
return 0;
}

  
  
  

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-112391-1-1.html 上篇帖子: E 下篇帖子: UVA 10763
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表