|
欢迎加入运维网交流群:263444886
Spark 1.5.0 是 1.x 系列的第六个版本,收到 230+ 位贡献者和 80+ 机构的努力,总共 1400+ patches。值得关注的改进如下:
- APIs:RDD, DataFrame 和 SQL
- 后端执行:DataFrame 和 SQL
- 集成:数据源,Hive, Hadoop, Mesos 和集群管理
- R 语言
- 机器学习和高级分析
- Spark Streaming
- Deprecations, Removals, Configs 和 Behavior 改进
- Spark Core
- Spark SQL & DataFrames
- Spark Streaming
- MLlib
- 已知问题解决
- Credits
下载:spark-1.5.0.tgz
详细改进请看发行说明和更新日志。
新特性列表:
- [SPARK-1855] - Provide memory-and-local-disk RDD checkpointing
- [SPARK-4176] - Support decimals with precision > 18 in Parquet
- [SPARK-4751] - Support dynamic allocation for standalone mode
[SPARK-4752] ->
- [SPARK-5133] - Feature Importance for Random Forests
- [SPARK-5155] - Python API for MQTT streaming
- [SPARK-5962] - [MLLIB] Python support for Power Iteration Clustering
- [SPARK-6129] - Create MLlib metrics user guide with algorithm definitions and complete code examples.
- [SPARK-6390] - Add MatrixUDT in PySpark
- [SPARK-6487] - Add sequential pattern mining algorithm PrefixSpan to Spark MLlib
- [SPARK-6813] - SparkR style guide
- [SPARK-6820] - Convert NAs to null type in SparkR DataFrames
- [SPARK-6833] - Extend `addPackage` so that any given R file can be sourced in the worker before functions are run.
- [SPARK-6964] - Support Cancellation in the Thrift Server
- [SPARK-7083] - Binary processing dimensional join
- [SPARK-7254] - Extend PIC to handle Graphs directly
- [SPARK-7293] - Report memory used in aggregations and joins
- [SPARK-7368] - add QR decomposition for RowMatrix
- [SPARK-7387] - CrossValidator example code in Python
- [SPARK-7422] - Add argmax to Vector, SparseVector
- [SPARK-7440] - Remove physical Distinct operator in favor of Aggregate
- [SPARK-7547] - Example code for ElasticNet
- [SPARK-7604] - Python API for PCA and PCAModel
- [SPARK-7605] - Python API for ElementwiseProduct
- [SPARK-7639] - Add Python API for Statistics.kernelDensity
[SPARK-7690] - MulticlassClassificationEvaluator for tuning Multiclass>
- [SPARK-7879] - KMeans API for spark.ml Pipelines
- [SPARK-7888] - Be able to disable intercept in Linear Regression in ML package
- [SPARK-7988] - Mechanism to control receiver scheduling
- [SPARK-8019] - [SparkR] Create worker R processes with a command other then Rscript
- [SPARK-8124] - Created more examples on SparkR DataFrames
- [SPARK-8129] - Securely pass auth secrets to executors in standalone cluster mode
- [SPARK-8169] - Add StopWordsRemover as a transformer
- [SPARK-8302] - Support heterogeneous cluster nodes on YARN
- [SPARK-8313] - Support Spark Packages containing R code with --packages
- [SPARK-8344] - Add internal metrics / logging for DAGScheduler to detect long pauses / blocking
- [SPARK-8348] - Add in operator to DataFrame Column
- [SPARK-8364] - Add crosstab to SparkR DataFrames
- [SPARK-8431] - Add in operator to DataFrame Column in SparkR
- [SPARK-8446] - Add helper functions for testing physical SparkPlan operators
- [SPARK-8456] - Python API for N-Gram Feature Transformer
- [SPARK-8479] - Add numNonzeros and numActives to linalg.Matrices
- [SPARK-8484] - Add TrainValidationSplit to ml.tuning
- [SPARK-8522] - Disable feature scaling in Linear and Logistic Regression
[SPARK-8538] - LinearRegressionResults>
[SPARK-8539] - LinearRegressionSummary>
- [SPARK-8551] - Python example code for elastic net
- [SPARK-8564] - Add the Python API for Kinesis
- [SPARK-8579] - Support arbitrary object in UnsafeRow
- [SPARK-8598] - Implementation of 1-sample, two-sided, Kolmogorov Smirnov Test for RDDs
- [SPARK-8600] - Naive Bayes API for spark.ml Pipelines
- [SPARK-8671] - Add isotonic regression to the pipeline API
- [SPARK-8704] - Add missing methods in StandardScaler (ML and PySpark)
- [SPARK-8706] - Implement Pylint / Prospector checks for PySpark
- [SPARK-8711] - Add additional methods to JavaModel wrappers in trees
- [SPARK-8774] - Add R model formula with basic support as a transformer
- [SPARK-8777] - Add random data generation test utilities to Spark SQL
- [SPARK-8782] - GenerateOrdering fails for NullType (i.e. ORDER BY NULL crashes)
- [SPARK-8798] - Allow additional uris to be fetched with mesos
- [SPARK-8807] - Add between operator in SparkR
- [SPARK-8847] - String concatination with column in SparkR
- [SPARK-8867] - Show the UDF usage for user.
- [SPARK-8874] - Add missing methods in Word2Vec ML
- [SPARK-8882] - A New Receiver Scheduling Mechanism
- [SPARK-8936] - Hyperparameter estimation in LDA
- [SPARK-8967] - Implement @since as an annotation
- [SPARK-8996] - Add Python API for Kolmogorov-Smirnov Test
- [SPARK-9022] - UnsafeProject
- [SPARK-9023] - UnsafeExchange
- [SPARK-9024] - Unsafe HashJoin
- [SPARK-9028] - Add CountVectorizer as an estimator to generate CountVectorizerModel
- [SPARK-9112] - Implement LogisticRegressionSummary similar to LinearRegressionSummary
- [SPARK-9115] - date/time function: dayInYear
- [SPARK-9143] - Add planner rule for automatically inserting Unsafe Safe row format converters
- [SPARK-9178] - UTF8String empty string method
- [SPARK-9201] - Integrate MLlib with SparkR using RFormula
- [SPARK-9230] - SparkR RFormula should support StringType features
- [SPARK-9231] - DistributedLDAModel method for top topics per document
- [SPARK-9245] - DistributedLDAModel predict top topic per doc-term instance
- [SPARK-9246] - DistributedLDAModel predict top docs per topic
- [SPARK-9263] - Add Spark Submit flag to exclude dependencies when using --packages
- [SPARK-9381] - Migrate JSON data source to the new partitioning data source
- [SPARK-9391] - Support minus, dot, and intercept operators in SparkR RFormula
- [SPARK-9440] - LocalLDAModel should save docConcentration, topicConcentration, and gammaShape
- [SPARK-9464] - Add property-based tests for UTF8String
[SPARK-9471] - Multilayer perceptron>
- [SPARK-9544] - RFormula in Python
- [SPARK-9657] - PrefixSpan getMaxPatternLength should return an Int
- [SPARK-10106] - Add `ifelse` Column function to SparkR
Apache Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoo 文件系统中并行运行。通过名为Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。
|
|
|