设为首页 收藏本站
查看: 2469|回复: 0

[经验分享] python 实现Hadoop的partitioner和二次排序

[复制链接]
累计签到:1 天
连续签到:1 天
发表于 2014-6-17 10:02:43 | 显示全部楼层 |阅读模式


我们知道,一个典型的Map-Reduce过程包 括:Input->Map->Partition->Reduce->Output。

Partition负责把Map任务输出的中间结果 按key分发给不同的Reduce任务进行处理。

Hadoop 提供了一个很有用的partitioner类KeyFieldBasedPartitioner,通过配置对应的參数就能够使用。通过 KeyFieldBasedPartitioner能够方便地实现二次排序。
用法:
      -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
一般配合:
      -D map.output.key.field.separator

      -D num.key.fields.for.partition使用。
map.output.key.field.separator指定key内部的分隔符
num.key.fields.for.partition指定对key分出来的前几部分做partition而不是整个key

演示样例:
1. 编写map程序mapper.sh;reduce程序reducer.sh; 測试数据test.txt
view plain

mapper.sh:  

#!/bin/sh  cat   

reducer.sh:  

#!/bin/sh  sort   

test.txt内容:  

1,2,1,1,1  

1,2,2,1,1  

1,3,1,1,1  

1,3,2,1,1  

1,3,3,1,1  

1,2,3,1,1  

1,3,1,1,1  

1,3,2,1,1  

1,3,3,1,1  

2. 測试数据test.txt放入hdfs,执行map-reduce程序
view plain

$ hadoop streaming /   

-D stream.map.output.field.separator=, /   

-D stream.num.map.output.key.fields=4 /   

-D map.output.key.field.separator=, /   

-D num.key.fields.for.partition=2 /   

-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner /   

-input /app/test/test.txt  /  

-output /app/test/test_result /
-mapper ./mapper.sh  /   

-reducer ./reducer.sh /   

-file mapper.sh /   

-file reducer.sh /   

-jobconf mapre.job.name="sep_test"   

$ hadoop fs –cat /app/test/test_result/part-00003      

1,2,1,1     1      

1,2,2,1     1      

1,2,3,1     1   

$ hadoop fs –cat /app/test/test_result/part-00004      

1,3,1,1     1      

1,3,1,1     1      

1,3,2,1     1      

1,3,2,1     1      

1,3,3,1     1      

1,3,3,1     1  
通过这样的方式,就做到前4个字段是key,可是通过前两个字段进行partition的目的
注意:
-D map.output.key.field.separator=, /  
这个分隔符使用TAB键貌似无论用


Hadoop Streaming 是一个工具, 取代编写Java的实现类,而利用可运行程序来完毕map-reduce过程

工作流程 : 

InputFile --> mappers --> [Partitioner] --> reducers --> outputFiles

理解 : 
1 输入文件,能够是指定远程文件系统内的目录下的 *
2 通过集群自己分解到各个PC上,每一个mapper是一个可运行文件,对应的启动一个进程,来实现你的逻辑
3 mapper 的输入为标准输入,所以,不论什么可以支持标准输入的可运行的东西,c,c++(编译出来的可运行文件),python,......都可以作 为mapper 和 reducer mapper的输出为标准输出,假设有Partitioner,就给它,假设没有,它的输出将作为reducer的输入
4 Partitioner 为可选的项,二次排序,能够对结果进行分类打到结果文件中面,它的输入是mapper的标准输出,它的输出,将作为reducer的标准输入
5 reducer 同 mapper
6 输出目录,在远端文件不能重名

Hadoop Streaming

1 : hadoop-streaming.jar 的位置 : $HADOOP_HOME/contrib/streaming 内

官方上面关于hadoop-streaming 的介绍已经非常具体了,并且也有了关于python的样例,我就不说了,这里总结下自己的经验

1 指定 mapper or reducer 的 task 官方上说要用 -jobconf 可是这个參数已经过时,不能够用了,官方说要用 -D, 注意这个-D是要作为最開始的配置出现的,由于是在maper 和 reducer 运行之前,就须要硬性指定好的,所以要出如今參数的最前面 ./bin/hadoop jar hadoop-0.19.2-streaming.jar -D .........-input ........ 类似这样,这样,即使你程序最后仅仅指定了一个输出管道,可是还是会有你指定的task数量的结果文件,仅仅只是多余的就是空的 实验下面 就知道了

2 关于二次排序,因为是用的streaming 所以,在可运行文件内,仅仅可以处理逻辑,还有就是输出,当然我们也可以指定二次排序,可是因为是所有參数化,不是非常灵活。比方:
10.2.3.40    1
11.22.33.33    1
www.renren.com 1
www.baidu.com    1
10.2.3.40    1

这样一个非常规整的输入文件,需求是要把记录独立的ip和url的count 可是输出文件要分切割出来。

官方站点的样例,是指定 key 然后对key 指定 主-key 和 key 用来排序,而 主-key 用来二次排序,这样会输出你想要的东西, 可是对于上面最简单的需求,对于传递參数,我们怎样做呢?

事实上我们还是能够利用这一点,在我们mapper 里面,还是依照/t来切割key value 可是我们要给key指定一个主-key 用来给Partitioner 来实现二次排序,所以我们能够略微处理下这个KEY,我们能够简单的推断出来ip 和 url 的差别,这样,我们就人为的加上一个主-key 我们在mapper里面,给每一个key人为的加上一个"标签",用来给partitioner做 二次排序用,比方我们的mapper的输出是这样

D&10.2.3.40    1
D&11.22.33.33    1
W&www.renren.com 1
W&www.baidu.com    1
D&10.2.3.40    1

然后通过传递命令參数

-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner //指定要求二次排序
-jobconf map.output.key.field.separator='&' //这里假设不加两个单引號的话我的命令会死掉
-jobconf num.key.fields.for.partition=1 //这里指第一个 & 符号来切割,保证不会出错

这样我们就能够通过 partitioner 来实现二次排序了

在reducer里面,我们再把"标签"摘掉(不费吹灰之力)就能够做到悄无声息的完毕二次排序了。

3: 关于模块化

(强调 : 没有在集群上測试,仅仅在单机上做測试)

程序猿最悲剧的就是不能代码复用,做这个也一样,用hadoop-streaming 也一样,要做到代码重用,是我第一个考虑的问题
当我看到 -file(具体能够看官方站点上的解说) 的时候,我就想到利用这个东西,果然,我的在本机上建立了一个py模块,简单的一个函数
然后在我的mapper里面import 它,本地測试通过后,利用-file 把模块所在的问价夹用 -file moudle/* 这个參数,传入streaming
运行的结果毫无错误,这样,我们就能够抽象出来一些模块的东西,来实现我们模块化的需求

注 : 不要忘记 chmod +x *.py  将py 变成可运行的,不然不能够运行

代码 : 

1: 模块代码 mg.py 用来给 mapper 贴标签

def mgFunction(line):
        if(line[0] >= '0' and line[0] <= '9'):
                return "D&" + line
        return "W&" + line

2: mapper.py

#!/usr/bin/env python
import sys
sys.path.append('/home/liuguoqing/Desktop/hadoop-0.19.2/moudle')
import mg
for line in sys.stdin:
        line = mg.mgFunction(line)
        line = line.strip()
#       print line
        words = line.split()
        print '%s\t%s' % (words[0], words[1])

3: reducer.py

#!/usr/bin/env python
import sys
user_login_day = {}

for line in sys.stdin:
        line = line[2:]//去掉帽子
        line = line.strip()
        userid, day = line.split('\t', 1)
        user_login_day[userid] = user_login_day.get(userid, 0) + 1

for uid in user_login_day.keys():
        print '%s\t%d' % (uid, user_login_day[uid])


这样就实现了模块化的能够二次排序的hadoop-streaming

命令 

./bin/hadoop jar hadoop-0.19.2-streaming.jar \
#streaming jar
-D mapred.reduce.tasks=2  \
#指定2个reduce来处理
-input user_login_day-input2/*  \
#指定输入文件 能够用 dir/* 方式
-output user_login_day-output102
#指定输出目录
-mapper ~/Desktop/hadoop-0.19.2/python/mapper/get_user_login_day_back.py  \
#指定mapper 可运行文件 我用全路径,好像用相对路径会出错...
-reducer ~/Desktop/hadoop-0.19.2/python/reducer/get_user_login_day_back.py \
#指定reducer 可运行文件 
-file ~/Desktop/hadoop-0.19.2/moudle/* \
#指定模块化的库文件 dir/* 模式
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \此处报错-partitioner: command not found
#指定 partitioner 參数为class
-jobconf map.output.key.field.separator='&' \
#指定 主-key 的切割符号为 '&'
-jobconf num.key.fields.for.partition=1
#指定为第一个‘&’

liuguoqing@liuguoqing-desktop:~/Desktop/hadoop-0.19.2$ ./bin/hadoop jar hadoop-0.19.2-streaming.jar -D mapred.reduce.tasks=2 -input user_login_day-input2/* -output user_login_day-output102 -mapper ~/Desktop/hadoop-0.19.2/python/mapper/get_user_login_day_back.py -reducer ~/Desktop/hadoop-0.19.2/python/reducer/get_user_login_day_back.py -file ~/Desktop/hadoop-0.19.2/moudle/* -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner -jobconf map.output.key.field.separator='&' -jobconf num.key.fields.for.partition=1
10/01/24 03:19:15 WARN streaming.StreamJob: -jobconf option is deprecated, please use -D instead.
packageJobJar: [/home/liuguoqing/Desktop/hadoop-0.19.2/moudle/mg.py, /home/liuguoqing/Desktop/hadoop-0.19.2/moudle/mg.pyc, /tmp/hadoop-liuguoqing/hadoop-unjar6780057097425964518/] [] /tmp/streamjob3100401358387519950.jar tmpDir=null
10/01/24 03:19:15 INFO mapred.FileInputFormat: Total input paths to process : 2
10/01/24 03:19:15 INFO streaming.StreamJob: getLocalDirs(): [/tmp/hadoop-liuguoqing/mapred/local]
10/01/24 03:19:15 INFO streaming.StreamJob: Running job: job_201001221008_0065
10/01/24 03:19:15 INFO streaming.StreamJob: To kill this job, run:
10/01/24 03:19:15 INFO streaming.StreamJob: /home/liuguoqing/Desktop/hadoop-0.19.2/bin/../bin/hadoop job  -Dmapred.job.tracker=hdfs://localhost:9881 -kill job_201001221008_0065
10/01/24 03:19:15 INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201001221008_0065
10/01/24 03:19:16 INFO streaming.StreamJob:  map 0%  reduce 0%
10/01/24 03:19:17 INFO streaming.StreamJob:  map 33%  reduce 0%
10/01/24 03:19:18 INFO streaming.StreamJob:  map 67%  reduce 0%
10/01/24 03:19:19 INFO streaming.StreamJob:  map 100%  reduce 0%
10/01/24 03:19:27 INFO streaming.StreamJob:  map 100%  reduce 50%
10/01/24 03:19:32 INFO streaming.StreamJob:  map 100%  reduce 100%
10/01/24 03:19:32 INFO streaming.StreamJob: Job complete: job_201001221008_0065
10/01/24 03:19:32 INFO streaming.StreamJob: Output: user_login_day-output102
liuguoqing@liuguoqing-desktop:~/Desktop/hadoop-0.19.2$ ./bin/hadoop dfs -ls user_login_day-output102
Found 3 items
drwxr-xr-x   - liuguoqing supergroup          0 2010-01-24 03:19 /user/liuguoqing/user_login_day-output102/_logs
-rw-r--r--   1 liuguoqing supergroup         25 2010-01-24 03:19 /user/liuguoqing/user_login_day-output102/part-00000
-rw-r--r--   1 liuguoqing supergroup         47 2010-01-24 03:19 /user/liuguoqing/user_login_day-output102/part-00001

liuguoqing@liuguoqing-desktop:~/Desktop/hadoop-0.19.2$ ./bin/hadoop dfs -cat user_login_day-output102/part-00000
54321    2
99999    1
12345    12
liuguoqing@liuguoqing-desktop:~/Desktop/hadoop-0.19.2$ ./bin/hadoop dfs -cat user_login_day-output102/part-00001
http://www.renren.com    3
http://www.baidu.com    3

以上为操作结果显示

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-20701-1-1.html 上篇帖子: Python hashlib模块 (主要记录md5加密) 下篇帖子: Python模拟HTTP Post上传文件 python
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表