设为首页 收藏本站
查看: 316|回复: 0

[经验分享] Oracle 分析函数使用介绍

[复制链接]

尚未签到

发表于 2016-7-12 08:46:53 | 显示全部楼层 |阅读模式
Oracle 分析函数使用介
分析函数是oracle816引入的一个全新的概念,分析数据提供了一种简单高效的理方式.在分析函数出以前,使用自联查询,查询或者内联视图,甚至复杂的存储过实现,在只要一条简单sql句就可以实现,而且在行效率方面也有相当大的提高.下面我将针对分析函数做一些具体的.

今天我主要大家介一下以下几个函数的使用方法
1.
动汇总函数rollup,cube,
2.rank
函数, rank,dense_rank,row_number
3.lag,lead
函数
4.sum,avg,
的移增加,平均数
5.ratio_to_report
理函数
6.first,last
取基数的分析函数


数据




Code: [Copy to clipboard]
06:34:23 SQL> select * from t;

BILL_MONTHAREA_CODENET_TYPELOCAL_FARE
--------------- ---------- ---------- --------------
2004055761G7393344.04
2004055761J5667089.85
2004055762G6315075.96
2004055762J6328716.15
2004055763G8861742.59
2004055763J7788036.32
2004055764G6028670.45
2004055764J6459121.49
2004055765G13156065.77
2004055765J11901671.70
2004065761G7614587.96
2004065761J5704343.05
2004065762G6556992.60
2004065762J6238068.05
2004065763G9130055.46
2004065763J7990460.25
2004065764G6387706.01
2004065764J6907481.66
2004065765G13562968.81
2004065765J12495492.50
2004075761G7987050.65
2004075761J5723215.28
2004075762G6833096.68
2004075762J6391201.44
2004075763G9410815.91
2004075763J8076677.41
2004075764G6456433.23
2004075764J6987660.53
2004075765G14000101.20
2004075765J12301780.20
2004085761G8085170.84
2004085761J6050611.37
2004085762G6854584.22
2004085762J6521884.50
2004085763G9468707.65
2004085763J8460049.43
2004085764G6587559.23

BILL_MONTHAREA_CODENET_TYPELOCAL_FARE
--------------- ---------- ---------- --------------
2004085764J7342135.86
2004085765G14450586.63
2004085765J12680052.38

40 rows selected.

Elapsed: 00:00:00.00




1.
使用rollup函数的介




Quote:
下面是直接使用普通sql句求出各地区的汇总数据的例子
06:41:36 SQL> set autot on
06:43:36 SQL> select area_code,sum(local_fare) local_fare
06:43:502from t
06:43:513group by area_code
06:43:574union all
06:44:005select '
' area_code,sum(local_fare) local_fare
06:44:066from t
06:44:087/

AREA_CODELOCAL_FARE
---------- --------------
576154225413.04
576252039619.60
576369186545.02
576453156768.46
5765104548719.19
333157065.31

6 rows selected.

Elapsed: 00:00:00.03

Execution Plan
----------------------------------------------------------
0SELECT STATEMENT Optimizer=ALL_ROWS (Cost=7 Card=1310 Bytes=
24884)

10UNION-ALL
21SORT (GROUP BY) (Cost=5 Card=1309 Bytes=24871)
32TABLE ACCESS (FULL) OF 'T' (Cost=2 Card=1309 Bytes=248
71)

41SORT (AGGREGATE)
54TABLE ACCESS (FULL) OF 'T' (Cost=2 Card=1309 Bytes=170
17)





Statistics
----------------------------------------------------------
0recursive calls
0db block gets
6consistent gets
0physical reads
0redo size
561bytes sent via SQL*Net to client
503bytes received via SQL*Net from client
2SQL*Net roundtrips to/from client
1sorts (memory)
0sorts (disk)
6rows processed


下面是使用分析函数rollup得出的汇总数据的例子
06:44:09 SQL> select nvl(area_code,'
') area_code,sum(local_fare) local_fare
06:45:262from t
06:45:303group by rollup(nvl(area_code,'
'))
06:45:504/

AREA_CODELOCAL_FARE
---------- --------------
576154225413.04
576252039619.60
576369186545.02
576453156768.46
5765104548719.19
333157065.31

6 rows selected.

Elapsed: 00:00:00.00

Execution Plan
----------------------------------------------------------
0SELECT STATEMENT Optimizer=ALL_ROWS (Cost=5 Card=1309 Bytes=
24871)

10SORT (GROUP BY ROLLUP) (Cost=5 Card=1309 Bytes=24871)
21TABLE ACCESS (FULL) OF 'T' (Cost=2 Card=1309 Bytes=24871
)





Statistics
----------------------------------------------------------
0recursive calls
0db block gets
4consistent gets
0physical reads
0redo size
557bytes sent via SQL*Net to client
503bytes received via SQL*Net from client
2SQL*Net roundtrips to/from client
1sorts (memory)
0sorts (disk)
6rows processed


从上面的例子我看出使用rollup函数,sql句更加简单,耗用的源更少,6consistent gets降到4consistent gets,如果基表很大的,果就可想而知了.




1.
使用cube函数的介




Quote:
了介cube函数我再来看看另外一个使用rollup的例子
06:53:00 SQL> select area_code,bill_month,sum(local_fare) local_fare
06:53:372from t
06:53:383group by rollup(area_code,bill_month)
06:53:494/

AREA_CODEBILL_MONTHLOCAL_FARE
---------- --------------- --------------
576120040513060433.89
576120040613318931.01
576120040713710265.93
576120040814135782.21
576154225413.04
576220040512643792.11
576220040612795060.65
576220040713224298.12
576220040813376468.72
576252039619.60
576320040516649778.91
576320040617120515.71
576320040717487493.32
576320040817928757.08
576369186545.02
576420040512487791.94
576420040613295187.67
576420040713444093.76
576420040813929695.09
576453156768.46
576520040525057737.47
576520040626058461.31
576520040726301881.40
576520040827130639.01
5765104548719.19
333157065.31

26 rows selected.

Elapsed: 00:00:00.00

只是根据rollup的第一个参数area_code对结果集的数据做了汇总处,而没有bill_month汇总分析,cube函数就是个而设计.
下面,看看使用cube函数的

06:58:02 SQL> select area_code,bill_month,sum(local_fare) local_fare
06:58:302from t
06:58:323group by cube(area_code,bill_month)
06:58:424order by area_code,bill_month nulls last
06:58:575/

AREA_CODEBILL_MONTHLOCAL_FARE
---------- --------------- --------------
576120040513060.43
576120040613318.93
576120040713710.27
576120040814135.78
576154225.41
576220040512643.79
576220040612795.06
576220040713224.30
576220040813376.47
576252039.62
576320040516649.78
576320040617120.52
576320040717487.49
576320040817928.76
576369186.54
576420040512487.79
576420040613295.19
576420040713444.09
576420040813929.69
576453156.77
576520040525057.74
576520040626058.46
576520040726301.88
576520040827130.64
5765104548.72
20040579899.53
20040682588.15
20040784168.03
20040886501.34
333157.05

30 rows selected.

Elapsed: 00:00:00.01

可以看到,cube函数的果比使用rollup多出了几行统计数据.就是cube函数根据bill_month做的汇总统计结



1 rollup
cube函数的再深入




Quote:
从上面的果中我很容易发现,统计数据所对应的行都会出null,
如何来区分到底是根据那个字段做的汇总,
这时,oraclegrouping函数就粉墨登.
如果当前的汇总记录是利用字段得出的,grouping函数就会返回1,返回0


1select decode(grouping(area_code),1,'all area',to_char(area_code)) area_code,
2decode(grouping(bill_month),1,'all month',bill_month) bill_month,
3sum(local_fare) local_fare
4from t
5group by cube(area_code,bill_month)
6* order by area_code,bill_month nulls last
07:07:29 SQL> /

AREA_CODEBILL_MONTHLOCAL_FARE
---------- --------------- --------------
576120040513060.43
576120040613318.93
576120040713710.27
576120040814135.78
5761all month54225.41
576220040512643.79
576220040612795.06
576220040713224.30
576220040813376.47
5762all month52039.62
576320040516649.78
576320040617120.52
576320040717487.49
576320040817928.76
5763all month69186.54
576420040512487.79
576420040613295.19
576420040713444.09
576420040813929.69
5764all month53156.77
5
76520040525057.74
576520040626058.46
576520040726301.88
576520040827130.64
5765all month104548.72
all area20040579899.53
all area20040682588.15
all area20040784168.03
all area20040886501.34
all areaall month333157.05

30 rows selected.

Elapsed: 00:00:00.01
07:07:31 SQL>


可以看到,所有的空值现在都根据grouping函数做出了很好的区分,这样利用rollup,cubegrouping函数,做数据统计候就可以松很多了.
2. rank函数的介

rollupcube函数的使用,下面我来看看rank系列函数的使用方法.

问题2.我想几个月份中各个地区的总话费的排名.


Quote:
了将rank,dense_rank,row_number函数的差别显示出来,们对已有的数据做一些修改,5763的数据改成与5761的数据相同.
1update t t1 set local_fare = (
2select local_fare from t t2
3where t1.bill_month = t2.bill_month
4and t1.net_type = t2.net_type
5and t2.area_code = '5761'
6* ) where area_code = '5763'
07:19:18 SQL> /

8 rows updated.

Elapsed: 00:00:00.01

先使用rank函数来算各个地区的话费排名.
07:34:19 SQL> select area_code,sum(local_fare) local_fare,
07:35:252rank() over (order by sum(local_fare) desc) fare_rank
07:35:443from t
07:35:454group by area_codee
07:35:505
07:35:52 SQL> select area_code,sum(local_fare) local_fare,
07:36:022rank() over (order by sum(local_fare) desc) fare_rank
07:36:203from t
07:36:214group by area_code
07:36:255/

AREA_CODELOCAL_FAREFARE_RANK
---------- -------------- ----------
5765104548.721
576154225.412
576354225.412
576453156.774
576252039.625

Elapsed: 00:00:00.01

可以看到注的地方出,跳位,排名3没有出
下面我再看看dense_rank查询.


07:36:26 SQL> select area_code,sum(local_fare) local_fare,
07:39:162dense_rank() over (order by sum(local_fare) desc ) fare_rank
07:39:393from t
07:39:424group by area_code
07:39:465/

AREA_CODELOCAL_FAREFARE_RANK
---------- -------------- ----------
5765104548.721
576154225.412
576354225.412
576453156.773
里出了第三名
576252039.624

Elapsed: 00:00:00.00


个例子中,了一个第三名,就是rankdense_rank的差,
rank
如果出两个相同的数据,后面的数据就会直接跳过这个排名,dense_rank不会,
更大的是,row_number哪怕是两个数据完全相同,排名也会不一,个特性在我想找出对应没个条件的唯一记录候又很大用


1select area_code,sum(local_fare) local_fare,
2row_number() over (order by sum(local_fare) desc ) fare_rank
3from t
4* group by area_code
07:44:50 SQL> /

AREA_CODELOCAL_FAREFARE_RANK
---------- -------------- ----------
5765104548.721
576154225.412
576354225.413
576453156.774
576252039.625

row_nubmer函数中,们发现,哪怕sum(local_fare)完全相同,们还是得到了不一排名,可以利用个特性剔除数据中的重复记录.

个帖子中的几个例子是三个函数的基本用法的. 下个帖子我详细的一些用法.




2. rank
函数的介

a.
取出数据中最后入网的n个用
select user_id,tele_num,user_name,user_status,create_date
from (
select user_id,tele_num,user_name,user_status,create_date,
rank() over (order by create_date desc) add_rank
from user_info
)
where add_rank <= :n;

b.
根据object_name除数据中的重复记录
create table t as select obj#,name from sys.obj$;
insert into t1 select * from t1 数次.
delete from t1 where rowid in (
select row_id from (
select rowid row_id,row_number() over (partition by obj# order by rowid ) rn
) where rn <> 1
);

c.
取出各地区的话费收入在各个月份排名.
SQL> select bill_month,area_code,sum(local_fare) local_fare,
2rank() over (partition by bill_month order by sum(local_fare) desc) area_rank
3from t
4group by bill_month,area_code
5/

BILL_MONTHAREA_CODELOCAL_FAREAREA_RANK
--------------- --------------- -------------- ----------
200405576525057.741
200405576113060.432
200405576313060.432
200405576212643.794
200405576412487.795
200406576526058.461
200406576113318.932
200406576313318.932
200406576413295.194
200406576212795.065
200407576526301.881
200407576113710.272
200407576313710.272
200407576413444.094
200407576213224.305
200408576527130.641
200408576114135.782
200408576314135.782
200408576413929.694
200408576213376.475

20 rows selected.
SQL>


3. lag
lead函数介

取出个月的上个月和下个月的话费总额
1select area_code,bill_month, local_fare cur_local_fare,
2lag(local_fare,2,0) over (partition by area_code order by bill_month ) pre_local_fare,
3lag(local_fare,1,0) over (partition by area_code order by bill_month ) last_local_fare,
4lead(local_fare,1,0) over (partition by area_code order by bill_month ) next_local_fare,
5lead(local_fare,2,0) over (partition by area_code order by bill_month ) post_local_fare
6from (
7select area_code,bill_month,sum(local_fare) local_fare
8from t
9group by area_code,bill_month
10* )
SQL> /
AREA_CODE BILL_MONTH CUR_LOCAL_FARE PRE_LOCAL_FARE LAST_LOCAL_FARE NEXT_LOCAL_FARE POST_LOCAL_FARE
--------- ---------- -------------- -------------- --------------- --------------- ---------------
576120040513060.4330013318.9313710.265
576120040613318.93013060.43313710.26514135.781
576120040713710.26513060.43313318.9314135.7810
576120040814135.78113318.9313710.26500
576220040512643.7910012795.0613224.297
576220040612795.06012643.79113224.29713376.468
576220040713224.29712643.79112795.0613376.4680
576220040813376.46812795.0613224.29700
576320040513060.4330013318.9313710.265
576320040613318.93013060.43313710.26514135.781
576320040713710.26513060.43313318.9314135.7810
576320040814135.78113318.9313710.26500
576420040512487.7910013295.18713444.093
576420040613295.187012487.79113444.09313929.694
576420040713444.09312487.79113295.18713929.6940
576420040813929.69413295.18713444.09300
576520040525057.7360026058.4626301.881
576520040626058.46025057.73626301.88127130.638
576520040726301.88125057.73626058.4627130.6380
576520040827130.63826058.4626301.88100
20 rows selected.

利用laglead函数,可以在同一行中示前n行的数据,也可以示后n行的数据.


4. sum,avg,max,min
动计算数据介

算出各个连续3个月的通话费用的平均数
1select area_code,bill_month, local_fare,
2sum(local_fare)
3over (partition by area_code
4order by to_number(bill_month)
5range between 1 preceding and 1 following ) "3month_sum",
6avg(local_fare)
7over (partition by area_code
8order by to_number(bill_month)
9range between 1 preceding and 1 following ) "3month_avg",
10max(local_fare)
11over (partition by area_code
12order by to_number(bill_month)
13range between 1 preceding and 1 following ) "3month_max",
14min(local_fare)
15over (partition by area_code
16order by to_number(bill_month)
17range between 1 preceding and 1 following ) "3month_min"
18from (
19select area_code,bill_month,sum(local_fare) local_fare
20from t
21group by area_code,bill_month
22* )
SQL> /

AREA_CODE BILL_MONTHLOCAL_FARE 3month_sum 3month_avg 3month_max 3month_min
--------- ---------- ---------------- ---------- ---------- ---------- ----------
576120040513060.43326379.363 13189.681513318.9313060.433
576120040613318.93040089.628 13363.209313710.26513060.433
576120040713710.26541164.976 13721.658714135.78113318.93
40089.628 = 13060.433 + 13318.930 + 13710.265
13363.2093 = (13060.433 + 13318.930 + 13710.265) / 3
13710.265 = max(13060.433 + 13318.930 + 13710.265)
13060.433 = min(13060.433 + 13318.930 + 13710.265)
576120040814135.78127846.04613923.02314135.78113710.265
576220040512643.79125438.851 12719.425512795.0612643.791
576220040612795.06038663.14812887.71613224.29712643.791
576220040713224.29739395.825 13131.941713376.46812795.06
576220040813376.46826600.765 13300.382513376.46813224.297
576320040513060.43326379.363 13189.681513318.9313060.433
576320040613318.93040089.628 13363.209313710.26513060.433
576320040713710.26541164.976 13721.658714135.78113318.93
576320040814135.78127846.04613923.02314135.78113710.265
576420040512487.79125782.97812891.48913295.18712487.791
576420040613295.18739227.071 13075.690313444.09312487.791
576420040713444.09340668.974 13556.324713929.69413295.187
576420040813929.69427373.787 13686.893513929.69413444.093
576520040525057.73651116.19625558.09826058.4625057.736
576520040626058.46077418.077 25806.025726301.88125057.736
576520040726301.88179490.97926496.99327130.63826058.46
576520040827130.63853432.519 26716.259527130.63826301.881

20 rows selected.

5. ratio_to_report
函数的介




Quote:
1select bill_month,area_code,sum(local_fare) local_fare,
2ratio_to_report(sum(local_fare)) over
3( partition by bill_month ) area_pct
4from t
5* group by bill_month,area_code
SQL> break on bill_month skip 1
SQL> compute sum of local_fare on bill_month
SQL> compute sum of area_pct on bill_month
SQL> /

BILL_MONTH AREA_CODELOCAL_FAREAREA_PCT
---------- --------- ---------------- ----------
200405576113060.433 .171149279
576212643.791 .165689431
576313060.433 .171149279
576412487.791 .163645143
576525057.736 .328366866
**********---------------- ----------
sum76310.1841

200406576113318.930 .169050772
576212795.060 .162401542
576313318.930 .169050772
576413295.187 .168749414
576526058.460 .330747499
**********---------------- ----------
sum78786.5671

200407576113710.265 .170545197
576213224.297 .164500127
576313710.265 .170545197
576413444.093 .167234221
576526301.881 .327175257
**********---------------- ----------
sum80390.8011

200408576114135.781 .170911147
576213376.468 .161730539
576314135.781 .170911147
576413929.694 .168419416
576527130.638 .328027751
**********---------------- ----------
sum82708.3621


20 rows selected.



6 first,last
函数使用介




Quote:
取出月通话费最高和最低的两个用.
1select bill_month,area_code,sum(local_fare) local_fare,
2first_value(area_code)
3over (order by sum(local_fare) desc
4rows unbounded preceding) firstval,
5first_value(area_code)
6over (order by sum(local_fare) asc
7rows unbounded preceding) lastval
8from t
9group by bill_month,area_code
10* order by bill_month
SQL> /

BILL_MONTH AREA_CODELOCAL_FARE FIRSTVALLASTVAL
---------- --------- ---------------- --------------- ---------------
200405576412487.791 57655764
200405576212643.791 57655764
200405576113060.433 57655764
200405576525057.736 57655764
200405576313060.433 57655764
200406576212795.060 57655764
200406576313318.930 57655764
200406576413295.187 57655764
200406576526058.460 57655764
200406576113318.930 57655764
200407576213224.297 57655764
200407576526301.881 57655764
200407576113710.265 57655764
200407576313710.265 57655764
200407576413444.093 57655764
200408576213376.468 57655764
200408576413929.694 57655764
200408576114135.781 57655764
200408576527130.638 57655764
200408576314135.781 57655764

20 rows selected.

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-242821-1-1.html 上篇帖子: ORACLE常用函数汇总<一> 下篇帖子: oracle 存储过程教程
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表