设为首页 收藏本站
查看: 404|回复: 0

[经验分享] Setting up Disks for Hadoop

[复制链接]

尚未签到

发表于 2016-12-6 08:39:06 | 显示全部楼层 |阅读模式
Setting up Disks for Hadoop

Here are some recommendations for setting up disks in a Hadoop cluster. What we have here is anecdotal -hard evidence is very welcome, and everyone should expect a bit of trial and error work.

Key Points

Goals for a Hadoop cluster are normally massive amounts of data with high I/O bandwidth. Your MapReduce jobs may be IO bound or CPU/Memory bound -if you know which one is more important (effectively how many CPU cycles/RAM MB used per Map or Reduce), you can make better decisions.

Hardware

You don't need RAID disk controllers for Hadoop Data Node, as it copies data across multiple machines instead. This increase the likelihood that there is a free task slot near that data, and if the servers are on different PSUs and switches, eliminates some more points of failure in the data center.

While the Hadoop Name Node and Secondary Name Node can write to a list of drive locations, they will stop functioning if it can not write to ALL the locations. In this case a mirrored RAID is a good idea for higher availability.

Having lots of disks per server gives you more raw IO bandwidth than having one or two big disks. If you have enough that different tasks can be using different disks for input and output, disk seeking is minimized, which is one of the big disk performance killers. That said: more disks have a higher power budget; if you are power limited, you may want fewer but larger disks.

Configuring Hadoop

Pass a list of disks to the dfs.data.dir parameter, Hadoop will use all of the disks that are available. When one goes offline it is taken out of consideration. Hadoop does not check for the disk coming back -it assumes it is "gone".

How to limit Data node's disk usage?

Use dfs.datanode.du.reserved configuration value in $HADOOP_HOME/conf/hdfs-site.xml for limiting disk usage.


  <property>
    <name>dfs.datanode.du.reserved</name>
    <!-- cluster variant -->
    <value>182400</value>
    <description>Reserved space in bytes per volume. Always leave this much space free for non dfs use.
    </description>
  </property>
Logging

The environment variable, HADOOP_LOG_DIR sets the directory Hadoop logs to.
the log4j.properties file in your hadoop configuration dir controls logging in more detail
Don't log to the root directory, as having a machine that does not boot because the logs are overflowing can be inconvenient.
Have a plan to clean up log output, otherwise jobs that log too much to the console will fill up log directories.
Get your developers to use the commons-logging APIs in their MapReduce code, so that you can turn logging up or down without recompiling the code. They can run in debug mode on their test machines, you can run at WARN level in production.
Some JVMs (JRockit) seem to log more. Tune your Log4j settings for your JVM, and only capture the stuff you really want.
Do not keep stuff under /tmp

Hadoop defaults to keeping things under /tmp so that you can play with Hadoop without filling up your disk. This is dangerous in a production cluster, as any automated cleanup cron job will eventually delete stuff in /tmp, at which point your Hadoop cluster is in trouble.
You will need cron job to clean stuff in /tmp up eventually. Plan for it.
Configure Hadoop to store stuff in stable locations, preferably off that root disk.
Java stores the info for jps under /tmp/hsperfdata_${user} -after the cleanup jps won't work. Have your script leave those directories alone, or get used to using ps -ef | grep java to find Java processes instead.
Underlying File System Options

If mount the disks as noatime, then the file access times aren't written back; this speeds up reads. There is also relatime, which stores some access time information, but is not as slow as the classic atime attribute. Remember that any access time information kept by Hadoop is independent of the atime attribute of individual blocks, so Hadoop does not care what your settings are here. If you are mounting disks purely for Hadoop, use noatime.

Formatting and tuning options are important. Using tunefs to set the reserve to zero percent can save you over 25 GigaBytes on a 1 TeraByte disk. Also the underlying file system is going to have many large files, you can get more space by lowering the number of inodes at format time.

Ext3

Yahoo! has publicly stated they use ext3. Regardless of the merits of the filesystem, that means that HDFS-on-ext3 has been publicly tested at a bigger scale than any other underlying filesystem that we know of.

XFS

From Bryan on the core-user list on 19 May 2009:

We use XFS for our data drives, and we've had somewhat mixed results. One of the biggest pros is that XFS has more free space than ext3, even with the reserved space settings turned all the way to 0. Another is that you can format a 1TB drive as XFS in about 0 seconds, versus minutes for ext3. This makes it really fast to kickstart our worker nodes. We have seen some weird stuff happen though when machines run out of memory, apparently because the XFS driver does something odd with kernel memory. When this happens, we end up having to do some fscking before we can get that node back online. As far as outright performance, I actually *did* do some tests of xfs vs ext3 performance on our cluster. If you just look at a single machine's local disk speed, you can write and read noticeably faster when using XFS instead of ext3. However, the reality is that this extra disk performance won't have much of an effect on your overall job completion performance, since you will find yourself network bottlenecked well in advance of even ext3's performance. The long and short of it is that we use XFS to speed up our new machine deployment, and that's it.
Ext4

The Ext4 Linux filesystem has delayed allocation of data which makes it handle unplanned server shutdowns/power outages less well than classic ext3. Consider turning off the delalloc option in /etc/fstab unless you trust your UPS.

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-310247-1-1.html 上篇帖子: hadoop API 学习小结(四) 下篇帖子: hadoop 2.3.0 配置 Single Node Cluster
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表