设为首页 收藏本站
查看: 1006|回复: 0

[经验分享] hadoop的名词解释

[复制链接]

尚未签到

发表于 2016-12-6 09:54:53 | 显示全部楼层 |阅读模式
  Lucene并不是一个应用程序,而是提供了一个纯Java的高性能全文索引引擎工具包
  Nutch是一个应用程序,是一个以Lucene为基础实现的搜索引擎应用(包含爬虫和其他附属搜索属性)
  Hadoop: Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。 Hadoop 有许多元素构成。主要包括两部分:最底部是 Hadoop Distributed File System(HDFS),它存储 Hadoop 集群中所有存储节点上的文件。HDFS(对于本文)的上一层是 MapReduce 引擎,该引擎由 JobTrackers 和 TaskTrackers组成。
1、HDFS
Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。HDFS有着高容错性(fault-tolerent)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以实现流的形式访问(streaming access)文件系统中的数据。HDFS开始是为开源的apache项目nutch的基础结构而创建,HDFS是hadoop项目的一部分,而hadoop又是lucene的一部分。

  HDFS是一个master/slave的结构,就通常的部署来说,在master上只运行一个Namenode,而在每一个slave上运行一个Datanode .HDFS支持传统的层次文件组织结构,同现有的一些文件系统在操作上很类似,比如你可以创建和删除一个文件,把一个文件从一个目录移到另一个目录,重命名等等操作。Namenode管理着整个分布式文件系统,对文件系统的操作(如建立、删除文件和文件夹)都是通过Namenode来控制。
  下面是HDFS的结构:
    DSC0000.jpg
  从上面的图中可以看出,Namenode,Datanode,Client之间的通信都是建立在TCP/IP的基础之上的。当Client要执行一个写入的操作的时候,命令不是马上就发送到Namenode,Client首先在本机上临时文件夹中缓存这些数据,当临时文件夹中的数据块达到了设定的Block的值(默认是64M)时,Client便会通知Namenode,Namenode便响应Client的RPC请求,将文件名插入文件系统层次中并且在Datanode中找到一块存放该数据的block,同时将该Datanode及对应的数据块信息告诉Client,Client便这些本地临时文件夹中的数据块写入指定的数据节点。
      HDFS采取了副本策略,其目的是为了提高系统的可靠性,可用性。HDFS的副本放置策略是三个副本,一个放在本节点上,一个放在同一机架中的另一个节点上,还有一个副本放在另一个不同的机架中的一个节点上。
  2、MapReduce的实现
 MapReduce是Google 的一项重要技术,它是一个编程模型,用以进行大数据量的计算。对于大数据量的计算,通常采用的处理手法就是并行计算。至少现阶段而言,对许多开发人员来说,并行计算还是一个比较遥远的东西。MapReduce就是一种简化并行计算的编程模型,它让那些没有多少并行计算经验的开发人员也可以开发并行应用。
      MapReduce的名字源于这个模型中的两项核心操作:Map和 Reduce。也许熟悉Functional Programming(
函数式编程)的人见到这两个词会倍感亲切。简单的说来,Map是把一组数据一对一的映射为另外的一组数据,其映射的规则由一个函数来指定,比如对[1, 2, 3, 4]进行乘2的映射就变成了[2, 4, 6, 8]。Reduce是对一组数据进行归约,这个归约的规则由一个函数指定,比如对[1, 2, 3, 4]进行求和的归约得到结果是10,而对它进行求积的归约结果是24。
hive:hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。另外一个是Windows注册表文件。   HBase:HBase是一个分布式的、面向列的开源数据库,该技术来源于Chang et al所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不同的是HBase基于列的而不是基于行的模式。
  compass: Compass是一个构建于Lucene之上的开源项目,旨在简化检索与任何java应用程序的集成。 利用元数据实现OR。
  Berkeley DB:Berkeley DB (DB)是一个高性能的,嵌入数据库编程库,Berkeley DB可以保存任意类型的键/值对,而且可以为一个键保存多个数据。Berkeley DB可以支持数千的并发线程同时操作数据库,支持最大256TB的数据
  heritrix:Heritrix是一个爬虫框架。
  httpclient:HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。
  HtmlParser:提取html元素的工具
    DFS(Depth-First-Search)深度优先搜索算法,是搜索算法的一种。是一种在开发爬虫早期使用较多的方法。它的目的是要达到被搜索结构的叶结点(即那些不包含任何超链的HTML文件) 。

  BFS(breadth-first search):每次将集合中的元素经过一些改动,分层生成当前状态的子状态(通常还删除父情况),添加到集合(队列)中,以实现遍历或搜索等目的的算法。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-310372-1-1.html 上篇帖子: 搭建Hadoop伪分布式环境 下篇帖子: hadoop相关备录
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表