设为首页 收藏本站
查看: 696|回复: 0

[经验分享] mvn+eclipse构建hadoop项目并运行(超简单hadoop开发入门指南)

[复制链接]

尚未签到

发表于 2016-12-7 07:57:41 | 显示全部楼层 |阅读模式
  本文详述如何在windows开发环境下通过mvn+eclipse构建hadoop项目并运行

必备环境

  • windows7操作系统
  • eclipse-4.4.2
  • mvn-3.0.3及用mvn生成项目架构(参阅mvn入门指南)
  • hadoop-2.5.2(直接上hadoop官网下载hadoop-2.5.2.tar.gz并解压到某个目录)

windows7下环境配置
  1、本地hadoop环境配置

添加环境变量HADOOP_HOME=E:\doc_api\ebook\hadoop-2.5.2

追加环境变量path内容:%HADOOP_HOME%\bin
  2、bin下增加hadoop.dll,winutils.exe文件

从github或从我的csdn资源页下载hadoop.dll,winutils.exe,放置到${HADOOP_HOME}\bin目录下
构建hadoop项目
  下面以经典的WordCount为例,构建我们第一个hadoop项目。

  • 引包
  pom文件中加入依赖包


<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.5.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.5.2</version>
<exclusions>
<exclusion>
<groupId>tomcat</groupId>
<artifactId>jasper-compiler</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.5.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-common</artifactId>
<version>2.5.2</version>
</dependency>
  注意:hadoop-common引入项排除了jasper-compiler.jar包,否则可能与tomcat自带的jsp编译器冲突,报如下错误

org.eclipse.jdt.internal.compiler.CompilationResult.getProblems()[Lorg/eclipse/jdt/core/compiler/IProblem

  • 编写WordCount类如下

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* @version 1.0
* @author tangqian
*/
public class WordCount extends Configured implements Tool {
public static void main(String[] args) throws Exception {
int result = ToolRunner.run(new Configuration(),new WordCount(), args);
System.exit(result);
}
@Override
public int run(String[] args) throws Exception {
Path inputPath, outputPath;
if(args.length == 2){
inputPath = new Path(args[0]);
outputPath = new Path(args[1]);
}else{
System.out.println("usage <input> <output>");
return 1;
}
Configuration conf = getConf();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
return job.waitForCompletion(true) ? 0 : 1;
}
public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
result.set(sum);
context.write(key, result);
}
}
}
  然后在该类上右键Run As->Run Configurations->Arguments标签的Program arguments中指定输入路径和输出路径如下:


file:///e:/word.txt file:///e:/hadoop/result2
  点Run即可运行该类,此时可在Console看到输出信息。等完成后,可到e:/hadoop/result2看到结果文件part-r-00000内容如下


is  1
test    2
this    1
two 1
  说明:由于是在本地hadoop单机模式下运行,故采用本地文件系统(以file://开头指定输入输出路径)。
  附

hadoop-2.5.2集群安装指南(参阅http://blog.csdn.net/tang9140/article/details/42869531)
  如何修改Windows7下的hosts文件?

hosts文件一般在C:\Windows\System32\drivers\etc目录下,在windows7下如果不是管理员身份登录,可能无权限修改,此时可右键hosts文件->属性->安全->编辑,选择当前登录用户,开放修改权限即可,具体操作如下图。
DSC0000.jpg
DSC0001.jpg




<script type="text/javascript">
$(function () {
$('pre.prettyprint code').each(function () {
var lines = $(this).text().split('\n').length;
var $numbering = $('<ul/>').addClass('pre-numbering').hide();
$(this).addClass('has-numbering').parent().append($numbering);
for (i = 1; i <= lines; i++) {
$numbering.append($('<li/>').text(i));
};
$numbering.fadeIn(1700);
});
});
</script>         
版权声明:本文为博主原创文章,未经博主允许不得转载。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-310650-1-1.html 上篇帖子: Hadoop HDFS分布式文件系统 下篇帖子: hadoop project 学习总结
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表