设为首页 收藏本站
查看: 751|回复: 0

[经验分享] hadoop中top-k问题解决

[复制链接]

尚未签到

发表于 2016-12-7 08:11:01 | 显示全部楼层 |阅读模式
  1.问题描述:在MapReduce中,想要输出最频繁出现的前k个单词。
  问题输入:<单词,它出现的频率>
  想要的输出:出现最多的前100个单词
  例如,输入是:
  hello  3
  word  4
  a   4
  moring  5
  goog  10
  bye  5
  (注意:中间的分割符是'\t')
  想要得到出现频率最多的前3个单词,则期望得到的结果为:
  goog  10
  moring  5
  bye  5
  2.解决方案
  可以用一个map和一个reduce解决,map负责按频率降序输出键值对,把所有mapper的结果都输出到一个reduer中,reduce负责输出前3个出现频率最高的单词(这里输出是在reducer的cleanup()函数中输出)
  详情 参见http://www.cnblogs.com/hengli/archive/2012/12/04/2801619.html
  3.程序代码
  (1)

package sort;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.io.*;
public class wordSort {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
if(otherArgs.length != 2)
{
System.err.println("Usage: wordsort <in> <out>");
System.exit(2);
}
Job job2 = new Job(conf,"word sort");   

job2.setJarByClass(wordSort.class);
job2.setMapperClass(SortMapper.class);
job2.setReducerClass(SortReducer.class);
job2.setMapOutputKeyClass(DesIntWritable.class);
job2.setMapOutputValueClass(Text.class);
//job2.setOutputKeyClass(Text.class);
//job2.setOutputValueClass(DesIntWritable.class);
job2.setNumReduceTasks(1);   //set the number of reducer = 1
job2.setOutputKeyClass(NullWritable.class);
job2.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job2, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job2, new Path(otherArgs[1]));
System.out.println("job2 start.....");
job2.waitForCompletion(true);
System.out.println("job2 done.");
}
}

  (2)SortMapper类

package sort;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
/**
* 按键值降序输出
* @author hx
*
*/
public class SortMapper extends Mapper<LongWritable,Text,DesIntWritable,Text> {
private DesIntWritable result = new DesIntWritable();
private Text word = new Text();
public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException
{
String[] temp = value.toString().split("\t");
if(temp != null && temp.length == 2)
{
result.set(Integer.parseInt(temp[1]));
word.set(temp[0]);
context.write(result, word);
}
}
}

  (3)SortReducer类

package sort;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.TreeMap;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
/**
*  输出排在前3个到单词及其频数
* @author hx
*
*/
public class SortReducer extends Reducer<DesIntWritable, Text, NullWritable, Text> {
public static final int k = 3;
public List<Text> words = new ArrayList<Text>();
public void reduce(DesIntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException
{
for(Text val:values)
{
Text result = new Text();
result.set(key + "\t" + val.toString());
if(words.size() <= k-1)
[size=1em]words.add(result);
}
}
@Override
protected void cleanup(Context context) throws IOException, InterruptedException
{
for(Text text :words)
{
context.write(NullWritable.get(), text);
}
}
}

  (4)DesIntWritable类

package sort;
import java.io.*;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
/** A WritableComparable for ints. */
public class DesIntWritable implements WritableComparable {
private int value;
public DesIntWritable() {}
public DesIntWritable(int value) { set(value); }
/** Set the value of this DesIntWritable. */
public void set(int value) { this.value = value; }
/** Return the value of this DesIntWritable. */
public int get() { return value; }
public void readFields(DataInput in) throws IOException {
value = in.readInt();
}
public void write(DataOutput out) throws IOException {
out.writeInt(value);
}
/** Returns true iff <code>o</code> is a DesIntWritable with the same value. */
public boolean equals(Object o) {
if (!(o instanceof DesIntWritable))
return false;
DesIntWritable other = (DesIntWritable)o;
return this.value == other.value;
}
public int hashCode() {
return value;
}
/** Compares two DesIntWritables. */
public int compareTo(Object o) {
int thisValue = this.value;
int thatValue = ((DesIntWritable)o).value;
return (thisValue<thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
}
public String toString() {
return Integer.toString(value);
}
/** A Comparator optimized for DesIntWritable. */
public static class Comparator extends WritableComparator {
public Comparator() {
super(DesIntWritable.class);
}
public int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2) {
int thisValue = readInt(b1, s1);
int thatValue = readInt(b2, s2);
return (thisValue>thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
}
}
static {                                        // register this comparator
WritableComparator.define(DesIntWritable.class, new Comparator());
}
}

  参考:
  [1] http://www.greenplum.com/blog/topics/hadoop/how-hadoop-mapreduce-can-transform-how-you-build-top-ten-lists
  [2] http://www.cnblogs.com/hengli/archive/2012/12/04/2801619.html

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-310668-1-1.html 上篇帖子: Hadoop源代码eclipse编译教程 下篇帖子: 【原创】应该在什么时候使用Hadoop?
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表