|
import java.io.File;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class MultipOutputWordCount extends Configured implements Tool {
/*
* Mapper<Object, Text, Text, IntWritable>
* Object ,读取的字节偏移量
* Text Map读取的文本行
* Text Map的输出Key
* IntWritable 的输出Value
*/
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
//一行行读取文件内容,一行行处理文件
StringTokenizer itr = new StringTokenizer(value.toString());//对输入行切词,eg:Hello World,Hello Hadoop
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);//<Hello,1>,<World,1>,<Hello,1>,<Hadoop,1>
}
}
}
/**
* Reducer<Text, IntWritable, Text, IntWritable>
* Text:Reduce 输入Key
* IntWritable:Reduce的输入Value
* Text: Reduce 输出Key 默认类型
* IntWritable,输入Value,默认类型LongWritable
*/
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
@SuppressWarnings("rawtypes")
private MultipleOutputs multipleOutputs;
protected void setup(Context context) throws IOException, InterruptedException {
multipleOutputs =new MultipleOutputs<Text,IntWritable>(context);
}
protected void cleanup(Context context) throws IOException,
InterruptedException {
multipleOutputs.close();
}
@SuppressWarnings("unchecked")
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
multipleOutputs.write(NullWritable.get(), new Text(key.toString()+":"+result), "1");
multipleOutputs.write(NullWritable.get(), key, "2");
multipleOutputs.write(NullWritable.get(), "我是你大爷", "3");
}
}
public static class MultipOutputWordFormat extends MultipleTextOutputFormat<Text, IntWritable>{
}
public static void main(String[] args) throws Exception {
System.exit(ToolRunner.run(new MultipOutputWordCount(), args));
}
@Override
public int run(String[] args) throws Exception {
File jarFile = EJob.createTempJar("bin");
ClassLoader classLoader = EJob.getClassLoader();
Thread.currentThread().setContextClassLoader(classLoader);
//Hadoop 运行环境
Configuration conf = new Configuration();
conf.set("mapred.job.tracker", "bfdbjc1:12001");
//任务参数设置
//a.创建任务,并设置名称,以便跟踪
Job job = new Job(conf, "word count");
//b.运行主类,Map类,Reduce类
job.setJarByClass(MultipOutputWordCount.class);
job.setMapperClass(MultipOutputWordCount.TokenizerMapper.class);
job.setReducerClass(MultipOutputWordCount.IntSumReducer.class);
//下面两行不需要写,Map默认输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//c.设置Reduce输入输出类型,Map默认出及Reduce默认输入是<Text,IntWritable>
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class);
//HDFS输入,如果是路径默认读取路径下所有文件.
FileInputFormat.addInputPath(job, new Path("hdfs://bfdbjc1:12000/user/work/a.txt"));
//reduce 输出路径
FileOutputFormat.setOutputPath(job, new Path("hdfs://bfdbjc1:12000/user/work/output/2da1"));
//Eclipse 本地提交
((JobConf) job.getConfiguration()).setJar(jarFile.toString());
//等待任务运行完成
job.waitForCompletion(true);
return 0;
}
} |
|
|