设为首页 收藏本站
查看: 1384|回复: 0

[经验分享] hadoop数据排序(一)

[复制链接]

尚未签到

发表于 2016-12-7 11:08:04 | 显示全部楼层 |阅读模式
  1、概述
  1TB排序通常用于衡量分布式数据处理框架的数据处理能力。Terasort是Hadoop中的的一个排序作业。那么Terasort在Hadoop中是怎样实现的呢?本文主要从算法设计角度分析Terasort作业。
  2、算法思想
  实 际上,当我们要把传统的串行排序算法设计成并行的排序算法时,通常会想到分而治之的策略,即:把要排序的数据划成M个数据块(可以用Hash的 方法做 到),然后每个map task对一个数据块进行局部排序,之后,一个reduce task对所有数据进行全排序。这种设计思路可以保证在 map阶段并行度很高,但在reduce阶段完全没有并行。
  为 了提高reduce阶段的并行度,TeraSort作业对以上算法进行改进:在map阶段,每个map task都会将数据划分成R个数据块 (R为reduce task个数),其中第i(i>0)个数据块的所有数据都会比第i+1个中的数据大;在reduce阶段,第i个 reduce task处理(进行排序)所有map task的第i块,这样第i个reduce task产生的结果均会比第i+1个大,最后将1~R个 reduce task的排序结果顺序输出,即为最终的排序结果。这种设计思路很明显比第一种高效,但实现难度较大,它需要解决以下两个技术难点:第一, 如何确定每个 map task数据的R个数据块的范围? 第二,对于某条数据,如果快速的确定它属于哪个数据块?答案分别为【采样】和【trie树】。
  3、Terasort算法
  3.1  Terasort算法流程
  对于Hadoop的Terasort排序算法,主要由3步组成:采样 –>> map task对于数据记录做标记 –>> reduce task进行局部排序。
  数据采样在JobClient端进行,首先从输入数据中抽取一部分数据,将这些数据进行排序,然后将它们划分成R个数据块,找出每个数据块的数据上限和下线(称为“分割点”),并将这些分割点保存到分布式缓存中。
  在 map阶段,每个map task首先从分布式缓存中读取分割点,并对这些分割点建立trie树(两层trie树,树的叶子节点上保存有该节点 对应的reduce task编号)。然后正式开始处理数据,对于每条数据,在trie树中查找它属于的reduce task的编号,并保存起来。
  在reduce阶段,每个reduce task从每个map task中读取其对应的数据进行局部排序,最后将reduce task处理后结果按reduce task编号依次输出即可。
  3.2    Terasort算法关键点
  (1)采样
  Hadoop自带了很多数据采样工具,包括IntercalSmapler,RandomSampler,SplitSampler等(具体见org.apache.hadoop.mapred.lib)。
  采样数据条数:sampleSize = conf.getLong(“terasort.partitions.sample”, 100000);
  选取的split个数:samples = Math.min(10, splits.length); splits是所有split组成的数组。
  每个split提取的数据条数:recordsPerSample = sampleSize / samples;
  对采样的数据进行全排序,将获取的“分割点”写到文件_partition.lst中,并将它存放到分布式缓存区中。
  举例说明:比如采样数据为b,abc,abd,bcd,abcd,efg,hii,afd,rrr,mnk
  经排序后,得到:abc,abcd,abd,afd,b,bcd,efg,hii,mnk,rrr
  如果reduce task个数为4,则分割点为:abd,bcd,mnk
  (2)map task对数据记录做标记
  每个map task从文件_partition.lst读取分割点,并创建trie树(假设是2-trie,即组织利用前两个字节)。
  Map task从split中一条一条读取数据,并通过trie树查找每条记录所对应的reduce task编号。比如:abg对应第二个reduce task, mnz对应第四个reduce task。
  (3)reduce task进行局部排序
  每个reduce task进行局部排序,依次输出结果即可。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-310953-1-1.html 上篇帖子: hadoop自定义inputformat源码 下篇帖子: Homework
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表