设为首页 收藏本站
查看: 488|回复: 0

[经验分享] hadoop实现自定义的数据类型

[复制链接]

尚未签到

发表于 2016-12-7 11:20:52 | 显示全部楼层 |阅读模式
  关于自定义数据类型,http://book.douban.com/annotation/17067489/ 一文中给出了一个比较清晰的说明和解释。
  以wordCount为例子
  定义自己的数据类型Http类

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
public class Http implements WritableComparable<Http>
{
public Http(){ }
private String value;
public Http(String value)
{
setValue(value);
}
public String getValue()
{
return value;
}
public void setValue(String value)
{
this.value = value;
}
public void readFields(DataInput in) throws IOException
{
value = in.readUTF();
}
public void write(DataOutput out) throws IOException
{
out.writeUTF(value);
}
public int compareTo(Http http)
{
return (value.compareTo(http.value));
}
@Override
public int hashCode()
{
final int prime = 31;
int result = 1;
result = prime * result + ((value == null) ? 0 : value.hashCode());
return result;
}
@Override
public boolean equals(Object obj)
{
if (!(obj instanceof Http))
return false;
Http other = (Http)obj;
return this.value.equals(other.value);
}
@Override
public String toString()
{
return value;
}
}
  编写wordcount程序

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCountEntry
{
public static class TokenizerMapper extends
Mapper<LongWritable, Http, Http, IntWritable>
{
private final static IntWritable one = new IntWritable(1);
private Http word = new Http();
public void map(LongWritable key, Http value, Context context)
throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())
{
word.setValue(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends
Reducer<Http, IntWritable, Http, IntWritable>
{
private IntWritable result = new IntWritable();
public void reduce(Http key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException
{
int sum = 0;
for (IntWritable val : values)
{
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args)
throws IOException, InterruptedException, ClassNotFoundException
{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2)
{
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Path input = new Path(args[0]);
Path output = new Path(args[1]);
Job job = new Job(conf, "word count");
job.setJarByClass(WordCountEntry.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Http.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, input);
FileOutputFormat.setOutputPath(job, output);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
  编写mrUnit测试用例进行mapreduce程序测试

import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.apache.hadoop.mrunit.mapreduce.ReduceDriver;
import org.junit.Before;
import org.junit.Test;
import com.geo.dmp.WordCountEntry.IntSumReducer;
import com.geo.dmp.WordCountEntry.TokenizerMapper;
public class WordCountEntryTest
{
private MapDriver<LongWritable, Http, Http, IntWritable> mapDriver;
private ReduceDriver<Http, IntWritable, Http, IntWritable> reduceDriver;
@Before
public void setUpBeforeClass() throws Exception
{
TokenizerMapper tm = new TokenizerMapper();
mapDriver = MapDriver.newMapDriver(tm);
IntSumReducer isr = new IntSumReducer();
reduceDriver = ReduceDriver.newReduceDriver(isr);
}
@Test
public void TokenizerMapperTest()
{
mapDriver.withInput(new LongWritable(), new Http("01a55\tablsd"));
mapDriver.withOutput(new Http("01a55"), new IntWritable(1));
mapDriver.withOutput(new Http("ablsd"), new IntWritable(1));
mapDriver.runTest();
}
@Test
public void IntSumReducerTest()
{
List<IntWritable> values = new ArrayList<IntWritable>();
values.add(new IntWritable(1));
values.add(new IntWritable(1));
reduceDriver.withInput(new Http("01a55"), values);
reduceDriver.withOutput(new Http("01a55"), new IntWritable(2));
reduceDriver.runTest();
}
}

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-310973-1-1.html 上篇帖子: hadoop API 读/写数据库 下篇帖子: Hadoop和云计算的关系
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表