设为首页 收藏本站
查看: 794|回复: 0

[经验分享] spring hadoop之mapreduce batch

[复制链接]

尚未签到

发表于 2016-12-7 11:31:56 | 显示全部楼层 |阅读模式
一、测试
// 定义hadoop configuration
Configuration conf = new Configuration();
// 指定hdfs上获取分析文件目录和输出分析结果目录
// 格式:hdfs://10.33.96.241:8020/user/tweets/input
//       hdfs://10.33.96.241:8020/user/tweets/output
// 最好使用当前hdfs系统用户目录;比如linux系统用户为tweets
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: HaashtagCount <in> <out>");
System.exit(2);
}
// 定义job 指定hadoop configuration和名称
Job job = new Job(conf, "hashtag count");
// 设定class所在的jar文件
job.setJarByClass(HashtagCount.class);
// 设定mapper
job.setMapperClass(TokenizerMapper.class);
// 设定job的合并类 一般为reduce实现对应的类
job.setCombinerClass(LongSumReducer.class);
// 设定reduce
job.setReducerClass(LongSumReducer.class);
// 由于mapreduce使用的key-value的格式
// 设定分析结果输出内容key的类型
job.setOutputKeyClass(Text.class);
// 设定分析结果输出内容value的类型
job.setOutputValueClass(LongWritable.class);
// 设定分析文件所在的路径
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
// 设定分析结果输出的路径
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
// 等待job完成
System.exit(job.waitForCompletion(true) ? 0 : 1);
二、map对应实现类
// 首先凡是map都必须继承Mapper 实现map方法
// 类Mapper四个参数:前两个执行mapper的key和value 最后两个为mapper执行
// 后输出的key和value
public static class TokenizerMapper extends
Mapper<Object, Text, Text, LongWritable> {
// 指定正则表达式
final static Pattern TAG_PATTERN = Pattern.compile("\"hashTags\":\\[([^\\]]*)");
// 指定执行mapper分解之后的输出结果key与value的类型
private final static LongWritable ONE = new LongWritable(1L);
private Text word = new Text();
// 必须实现的方面 执行mapper的操作均在该方法中
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
  // 获取符合要求的内容 循环进行分割内容
  Matcher matcher = TAG_PATTERN.matcher(value.toString());
  while (matcher.find()) {
String found = matcher.group();
String cleanedString = found.replaceFirst("\"hashTags\":\\[\\{\"text\":\"", "");
String superPolished = cleanedString.split("\",\"")[0];

        String useMe = superPolished;
if (superPolished.startsWith("\\u")) {
useMe = StringEscapeUtils.unescapeJava(superPolished);
}
useMe = useMe.split("\"")[0];
        // 将符合要求的内容和统计结果输出到对应分析结果中
       // 注:以上代码主要是对分析内容进行拆分 因为对应的统计结果ONE均为1
word.set(useMe.toLowerCase());
context.write(word, ONE);
      }
   }

}
三、reduce实现类
// 凡是实现reduce的必须继承Reducer类;前两个参数为mapper分析之后的结果
// key与value 最后两个参数为统计结果的key与value
// 同时每个类都必须实现reduce方法
public static class LongSumReducer extends
Reducer<Text, LongWritable, Text, LongWritable> {
  private LongWritable result = new LongWritable();

  // 实现reduce方法
  // 这个里面根据实际的业务需要实现对应的业务内容统计
  public void reduce(Text key, Iterable<LongWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (LongWritable val : values) {
    sum += val.get();
}
     // 由于该处针对的是同一个内容统计,因而只需要处理统计结果的value即可
result.set(sum);
    // 将统计结果提交到task的上下文环境中 输出
context.write(key, result);
    }
}
以上即为简单的mapreduce框架的实现过程,基于spring-hadoop api实现

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-310990-1-1.html 上篇帖子: hadoop之Pig(一)--简介 下篇帖子: Hadoop深入学习:Hadoop全排序中的Sampler采样器
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表