设为首页 收藏本站
查看: 777|回复: 0

[经验分享] Hadoop日志系统知识

[复制链接]

尚未签到

发表于 2016-12-8 06:18:21 | 显示全部楼层 |阅读模式
hadoop日志系统中的日志收集模块,在如今比较流行的以及开源具有代表性的有facebook的scribe,apache的chukwa,linkedin的kafka,以及非常优秀的cloudrea的flume,在1.x的hadoop生态系统中,flume比较适合做日志收集模块,因为其功能全面,且具有高扩展性,高稳定性,高可靠性,以及便于管理和维护。


在1.xhadoop生态系统中,HDFS分布式文件存储系统,和Hbase分布式面向列的数据库,适合存储海量日志信息,HDFS,因为具有良好的扩展性,高容错性,高可靠性,所以适合海量日志信息的存储,Hbase因具有高可靠性,高性能,面向列以及良好的扩展性,且支持实时存储数据,结合HDFS作为底层的分布式存储系统,所以也适合存储海量日志信息


日志模块分析工具有Hive,Pig,Mahout,Hive的适用场景通常用于结构化海量日志的离线数据统计问题。Pig适用于ad-hoc在Query时离线数据分析工具。Mahout适用于对海量数据的机器学习和数据挖掘工作。

Hbase适合实时存读取网站的更新频率信息。
Hive和Pig适合完成网页去重复功能。
可以使用MapReduce分布式计算框架辅以hive,pig,mahout对网页进行处理和分析。



二,Cloudrea的flume日志收集模块,分为三层架构,分别位agent,collector,storage,agent和collector又由二部分组成,source和sink,source代表日志的数据源,sink代表数据方向,
参数作用
agent将数据源发送给collector统一处理
collector将日志数据收集后汇总,交给HDFS存储
stroage是存储系统,可以是数据库,简单的txt,HDFS,以及Hbase等等

简易流程图如下:



DSC0000.jpg

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-311019-1-1.html 上篇帖子: Hadoop之HBase快速入门 下篇帖子: hadoop,storm,NOSQL学习资源
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表