设为首页 收藏本站
查看: 818|回复: 0

[经验分享] Hadoop中自定义计数器

[复制链接]
累计签到:2 天
连续签到:1 天
发表于 2016-12-8 09:39:03 | 显示全部楼层 |阅读模式
  一、环境

1、hadoop 0.20.2

2、操作系统Linux

二、背景

1、最近写MR的代码,总在想统计一些错误的数据出现的次数,发现如果都写在reduce的输出里太难看了,所以想找办法专门输出一些统计数字。

2、翻看《hadoop权威指南》第8章第1节的时候发现能够自定义计数器,但都是基于0.19版本写的,好多函数都不对,改动相对较大。

3、基于上面2个理由,写个文档,记录一下。

三、实现

1、前提:写入一个文件,规范的是3个字段,“\t”划分,有2条异常,一条是2个字段,一条是4个字段,内容如下:
jim    1       28
kate     0       26
tom    1
kaka     1       22
lily     0       29      22
2、统计处不规范的数据。我没有写reduce,因为不需要输出,代码如下,先看代码
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class MyCounter {

public static class MyCounterMap extends Mapper<LongWritable, Text, Text, Text> {

public static Counter ct = null;

protected void map(LongWritable key, Text value,
org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, Text, Text>.Context context)
throws java.io.IOException, InterruptedException {
String arr_value[] = value.toString().split("\t");
if (arr_value.length > 3) {
ct = context.getCounter("ErrorCounter", "toolong");
ct.increment(1);
} else if (arr_value.length < 3) {
ct = context.getCounter("ErrorCounter", "tooshort");
ct.increment(1);
}
}
}

public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: MyCounter <in> <out>");
System.exit(2);
}

Job job = new Job(conf, "MyCounter");
job.setJarByClass(MyCounter.class);

job.setMapperClass(MyCounterMap.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

3、启动命令如下:
hadoop jar /jz/jar/Hadoop_Test.jar jz.MyCounter /jz/* /jz/06
对于小于3个字段的采用tooshort统计,大于3个字段的采用toolong统计

4、结果如下(红色部分):
10/08/04 17:29:15 INFO mapred.JobClient: Job complete: job_201008032120_0019
10/08/04 17:29:15 INFO mapred.JobClient: Counters: 18
10/08/04 17:29:15 INFO mapred.JobClient:   Job Counters
10/08/04 17:29:15 INFO mapred.JobClient:     Launched reduce tasks=1
10/08/04 17:29:15 INFO mapred.JobClient:     Rack-local map tasks=1
10/08/04 17:29:15 INFO mapred.JobClient:     Launched map tasks=6
10/08/04 17:29:15 INFO mapred.JobClient:   ErrorCounter
10/08/04 17:29:15 INFO mapred.JobClient:     tooshort=1
10/08/04 17:29:15 INFO mapred.JobClient:     toolong=1
10/08/04 17:29:15 INFO mapred.JobClient:   FileSystemCounters
10/08/04 17:29:15 INFO mapred.JobClient:     FILE_BYTES_READ=6
10/08/04 17:29:15 INFO mapred.JobClient:     HDFS_BYTES_READ=47
10/08/04 17:29:15 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=234
10/08/04 17:29:15 INFO mapred.JobClient:   Map-Reduce Framework
10/08/04 17:29:15 INFO mapred.JobClient:     Reduce input groups=0
10/08/04 17:29:15 INFO mapred.JobClient:     Combine output records=0
10/08/04 17:29:15 INFO mapred.JobClient:     Map input records=5
10/08/04 17:29:15 INFO mapred.JobClient:     Reduce shuffle bytes=36
10/08/04 17:29:15 INFO mapred.JobClient:     Reduce output records=0
10/08/04 17:29:15 INFO mapred.JobClient:     Spilled Records=0
10/08/04 17:29:15 INFO mapred.JobClient:     Map output bytes=0
10/08/04 17:29:15 INFO mapred.JobClient:     Combine input records=0
10/08/04 17:29:15 INFO mapred.JobClient:     Map output records=0
10/08/04 17:29:15 INFO mapred.JobClient:     Reduce input records=0
四、总结
1、其实hadoop权威指南写的很清楚了,但是由于版本不一样,所以很多方法也不同,总一下,主要有以下不同:
不再需要枚举的类型、计数器名不在需要写properties文件,调用的方法在context中都封装了。
2、hadoop权威指南中写了统计百分比值,代码改改就能实现,就是一个总数除以错误数然后百分比的结果。
3、有疑问或是写的不对的地方,欢迎发邮件到dajuezhao@gmail.com

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-311319-1-1.html 上篇帖子: hadoop 遇到一个任务失败的错误 下篇帖子: hadoop学习日记二 运行程序
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表