设为首页 收藏本站
查看: 781|回复: 0

[经验分享] Hadoop深入学习:Combiner

[复制链接]

尚未签到

发表于 2016-12-8 10:48:13 | 显示全部楼层 |阅读模式
在本节中,我们着重学习MapReduce编程模型中的Combiner组件。
        每一个map都可能会产生大量的本地输出,Combiner的作用就是对map端的输出先做一次合并,以减少在map和reduce节点之间的数据传输量,以提高网络IO性能,是MapReduce的一种优化手段之一。
        1)、Combiner最基本是实现本地key的聚合,对map输出的key排序、value进行迭代。如下所示:引用

        map:(key1,value1) ——> list(key2,value2)
        conbine:(key2,list(value2)) ——> list(key2,value2)
        reduce:(key2,list(value2)) ——> list(key3,value3)

        

        2)、Combiner还有本地reduce功能(其本质上就是一个reduce):引用

        map:(key1,value1) ——> list(key2,value2)
        conbine:(key2,list(value2)) ——> list(key3,value3)
        reduce:(key3,list(value3)) ——> list(key4,value4)

        

        3)、如果不用Combiner,南无说有的结果都会在reduce端完成,效率比较低小,并且会占用很多的网络IO;使用Combiner先完成在map端的本地聚合,可以减少网络传输数据量,提高性能。

        但是,不要以为在写MapReduce程序时设置了Combiner就认为Combiner一定会起作用,实际情况是这样的吗?答案是否定的。hadoop文档中也有说明Combiner可能被执行也可能不被执行。那么在什么情况下不执行呢?如果当前集群在很繁忙的情况下job就是设置了也不会执行Combiner。

        另外还要注意,Combiner使用的合适的话会提高Job作业的执行数度,但是使用不合适的话,会导致输出的结果不正确。Combiner的输出是Reduce的输入,它绝不会改变最终的计算结果。
        Conbiner的适用场景比如说在汇总统计时,就可以使用Conbiner,但是在求平均数的时候就是适合适用了。

        最后,我们再来看一下Combiner的执行时机。我们之前已对map端的shuffle做过比较升入的了解,详情请看MapTask详解。那么,Combiner会在map端的那个时期执行呢?实际上,Conbiner函数的执行时机可能会在map的merge操作完成之前,也可能在merge之后执行,这个时机由配置参数min.num.spill.for.combine(该值默认为3),也就是说在map端产生的spill文件最少有min.num.spill.for.combine的时候,Conbiner函数会在merge操作合并最终的本机结果文件之前执行,否则在merge之后执行。通过这种方式,就可以在spill文件很多并且需要做conbine的时候,减少写入本地磁盘的数据量,同样也减少了对磁盘的读写频率,可以起到优化作业的目的。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-311420-1-1.html 上篇帖子: hadoop pig入门总结 下篇帖子: hadoop 调度器 capacityTaskScheduler
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表