设为首页 收藏本站
查看: 834|回复: 0

[经验分享] (转)关于Hadoop的shuffle

[复制链接]

尚未签到

发表于 2016-12-8 10:50:03 | 显示全部楼层 |阅读模式
  源地址: http://blog.csdn.net/tobeandnottobe/article/details/7188747
  我们知道每个reduce task输入的key都是按照key排序的。
  但是每个map的输出只是简单的key-value而非key-valuelist,所以洗牌的工作就是将map输出转化为reducer的输入的过程。
  在map结束之后shuffle要做的事情:
  map的输出不是简单的写入本地文件,而是更多的利用内存缓存和预排序工作,以提高效率。io.sort.mb 用于控制map 输出时候的内存大小,默认100Mb。
当map所使用的buffer达到一定比例的时候,会启动一个线程来将内存中数据写入磁盘。此时map过程不会暂停直到内存消耗完位置。这个线程会先将内 存中的数据按照reducer的数据切分成多块,可能是按照reducer大小hash,然后对于每个块里面的数据按照key进行sort排序,此时假如 定义了一个combiner函数,那么排序的结果就是combiner的输入。每当数据缓存大小达到了限制,一个新的spill文件就会被创建。所以,当 map所有的数据都被处理了之后,就需要对多个spill文件进行合并操作。combiner的作用是为了压缩mapper的输出结果,另外 combiner函数需要满足n次combiner之后,输出结果都保持一致。当然,合并成一个文件的时候hadoop默认不会压缩数据,但是可以通过设 置参数指定某个压缩类对数据进行压缩。
     在reducer开始之前shuffle要做的事情分为两步copy和sort 阶段:
     copy phrase
     每个reducer  task新建几个thread用于将mapper的输出并行copy过来,copy时机是当一个mapper完成之后就可以进行。
但是reducer是如何知晓某个mapper是否完成了任务呢,mapper完成之后会给tasktracker发送一个状态更新,然后 tasktraker会将该信息发送给jobtrack。然后reducer中的一个线程负责询问jobtracker 每个map的输出位置。而每个mapper上的输出数据需要等到整个job完成之后,jobtracker会通知删除。
    sort phrase
   将多个map输出合并成一个输入。
   example:50个map输出 分5 round进行文件合并,每次将10个文件合并成一个。
最后5个文件可能直接进入reducer阶段。
   关于Task中所谓的Speculative Execution
是指当一个job的所有task都在running的时候,当某个task的进度比平均进度慢时才会启动一个和当前Task一模一样的任务,当其中一个 task完成之后另外一个会被中止,所以Speculative Task不是重复Task而是对Task执行时候的一种优化策略

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-311422-1-1.html 上篇帖子: hadoop 调度器 capacityTaskScheduler 下篇帖子: hadoop源码研究--output (5)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表