设为首页 收藏本站
查看: 894|回复: 0

[经验分享] hadoop-map-reduce执行流程调研报告

[复制链接]

尚未签到

发表于 2016-12-9 08:48:19 | 显示全部楼层 |阅读模式
hadoop-map-reduce执行流程调研报告
参与者:
Client       简称:C
JobTracker   简称:JT
TaskTracker  简称:TT
DataNode   简称:DN
NameNode  简称:NN
流程描述:
简述:
作业的提交 -> Map任务的分配和执行 -> Reduce任务的分配和执行 -> 作业的完成
每个具体的任务又分: 准备输入-> 算法的执行 -> 输出结果,三个步骤.
作业的提交:
     1. /home/hadoop/hadoop-1.0.3/bin/hadoo jar  ~/learning-hadoop.jar  com.easou.mr.bookMark.BookMarkMR
     2. RunJar.java  -> main
     3.反射 -BookMarkMR->main
     4. org.apache.hadoop.mapreduce.Job ->waitForCompletion
//提交
i f (state == JobState.DEFINE) {
submit();
}
     5. org.apache.hadoop.mapred.JobClient -> submitJobInternal
     6.
/data/tmp/core/mapred/staging/hadoop/.staging/jobid/job.jar(执行jar)
/data/tmp/core/mapred/staging/hadoop/.staging/jobid/job.split(输入分片文件)
/data/tmp/core/mapred/staging/hadoop/.staging/jobid/job.splitmetainfo(分片meta)
/data/tmp/core/mapred/staging/hadoop/.staging/jobid/job.xml(jobconf配置信息)
7.
this.jobSubmitClient = createRPCProxy(JobTracker.getAddress(conf), conf);

JobID jobId = jobSubmitClient.getNewJobId();//jobid的生成方式

public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts) throws IOException

synchronized (jobs) {
      synchronized (taskScheduler) {
        jobs.put(job.getProfile().getJobID(), job);
        for (JobInProgressListener listener : jobInProgressListeners) {
          listener.jobAdded(job);
        }
      }
    }
Map reduce任务的分配和执行:
C rpc 调用 addJob 触发监听:
JobQueueJobInProgressListener(用于监控job的运行状态)

EagerTaskInitializationListener;(用于对Job进行初始化)

public void run() {
      JobInProgress job = null;
      while (true) {
        try {
          synchronized (jobInitQueue) {
            while (jobInitQueue.isEmpty()) {
              jobInitQueue.wait();
            }
            job = jobInitQueue.remove(0);
          }
          threadPool.execute(new InitJob(job));
        } catch (InterruptedException t) {
          LOG.info("JobInitManagerThread interrupted.");
          break;
        }
      }
      LOG.info("Shutting down thread pool");
      threadPool.shutdownNow();
}
    //后台守护运行
jobInitManagerThread.setDaemon(true);
    this.jobInitManagerThread.start();
死循环等待job加入,并初始化.


JT初始化task
JobInProgress -> initTasks   
1.从HDFS中读取job.split文件从而生成input splits
2.map task的个数就是input split的个数
numMapTasks = splits.length;
3.为每个map tasks生成一个TaskInProgress来处理一个input split
4.对于map task,将其放入nonRunningMapCache,是一个Map<Node, List<TaskInProgress>>,也即对于map task来讲,其将会被分配到其input split所在的Node上。nonRunningMapCache将在JobTracker向TaskTracker分配map task的时候使用。
5.创建reduce task
6.reduce task放入nonRunningReduces,其将在JobTracker向TaskTracker分配reduce task的时候使用。
6.创建两个cleanup task,一个用来清理map,一个用来清理reduce.
7.创建两个初始化 task,一个初始化map,一个初始化reduce.

TT:
1.一直运行
2. 每隔一段时间就向JobTracker发送heartbeat
3.在heartbeat中要返回给JobTracker一些统计信息, 报告给JobTracker,此TaskTracker的当前状态
4.发送Heartbeat到JobTracker,得到response
5.从Response中得到此TaskTracker需要做的事情
6.如果是运行一个新的Task,则将Action添加到任务队列中
7.当满足下面的条件的时候,此TaskTracker请求JobTracker为其分配一个新的Task来运行:
当前TaskTracker正在运行的map task的个数小于可以运行的map task的最大个数
当前TaskTracker正在运行的reduce task的个数小于可以运行的reduce task的最大个数
8.向JobTracker发送RPC调用Heartbeat

JT 分配 task:


根据数据所处的位置与Task Tracker的距离,有如下几种data locality级别:
0     node-local    输入分片就在Task Tracker本地
1     rack-local     输入分片在Task Tracker所在的rack内其它Task Tracker上
2     off-switch    输入分片在其它的rack内

  1.先调度优先级高的作业,统一优先级的作业则先进先出;
  2.尽量使集群每一个TaskTracker达到负载均衡(这个均衡是task数量上的而不是实际的工作强度);
  3.尽量分配作业的本地任务给TaskTracker,但不是尽快分配作业的本地任务给TaskTracker,最多分配一个非本地任务给TaskTracker(一是保证任务的并发性,二是避免有些TaskTracker的本地任务被偷走),最多分配一个reduce任务;
  4..为紧急的Task预留一定的slot;

作业的完成:
Map Clean Up Task(Map任务服务器的清理任务,用于清理相关的过期的文件和环境...) -> Map Setup Task(Map任务服务器的安装任务,负责配置好相关的环境...) -> Map Tasks -> Reduce Clean Up Task -> Reduce Setup Task -> Reduce Tasks

流程图:
整体分配流程:







Map的具体流程





Reduce的具体流程

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-311695-1-1.html 上篇帖子: [Hadoop]转载-Pig的简单介绍 下篇帖子: Commissioning and Decommissioning Nodes from Hadoop Cluster
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表