设为首页 收藏本站
查看: 960|回复: 0

[经验分享] Hadoop Hive sql语法详解5--HiveQL与SQL区别

[复制链接]

尚未签到

发表于 2016-12-12 11:18:34 | 显示全部楼层 |阅读模式
  1.hive内联支持什么格式?
2.分号字符注意什么问题?

3.hive中empty是否为null?
4.hive是否支持插入现有表或则分区中?
5.hive是否支持INSERT INTO 表 values()?


1、Hive不支持等值连接 

·SQL中对两表内联可以写成:
·select * from dual a,dual b where a.key = b.key;
·Hive中应为
·select * from dual a join dual b on a.key = b.key; 
而不是传统的格式:
SELECT t1.a1 as c1, t2.b1 as c2FROM t1, t2
WHERE t1.a2 = t2.b2

2、分号字符
·分号是SQL语句结束标记,在HiveQL中也是,但是在HiveQL中,对分号的识别没有那么智慧,例如:
·select concat(key,concat(';',key)) from dual;
·但HiveQL在解析语句时提示:
        FAILED: Parse Error: line 0:-1 mismatched input '<EOF>' expecting ) in function specification
·解决的办法是,使用分号的八进制的ASCII码进行转义,那么上述语句应写成:
·select concat(key,concat('\073',key)) from dual;

3、IS [NOT] NULL
·SQL中null代表空值, 值得警惕的是, 在HiveQL中String类型的字段若是空(empty)字符串, 即长度为0, 那么对它进行IS NULL的判断结果是False.

4、Hive不支持将数据插入现有的表或分区中,
仅支持覆盖重写整个表,示例如下:

  • INSERT OVERWRITE TABLE t1  
  • SELECT * FROM t2;

复制代码
  

5、hive不支持INSERT INTO 表 Values(), UPDATE, DELETE操作
    这样的话,就不要很复杂的锁机制来读写数据。
    INSERT INTO syntax is only available starting in version 0.8。INSERT INTO就是在表或分区中追加数据。

6、hive支持嵌入mapreduce程序,来处理复杂的逻辑
如:

  • FROM (  
  • MAP doctext USING 'python wc_mapper.py' AS (word, cnt)  
  • FROM docs  
  • CLUSTER BY word  
  • ) a  
  • REDUCE word, cnt USING 'python wc_reduce.py';  

复制代码
  

--doctext: 是输入
--word, cnt: 是map程序的输出

--CLUSTER BY: 将wordhash后,又作为reduce程序的输入



并且map程序、reduce程序可以单独使用,如:

  • FROM (  
  • FROM session_table  
  • SELECT sessionid, tstamp, data  
  • DISTRIBUTE BY sessionid SORT BY tstamp  
  • ) a  
  • REDUCE sessionid, tstamp, data USING 'session_reducer.sh';  

复制代码
  

-DISTRIBUTE BY: 用于给reduce程序分配行数据

7、hive支持将转换后的数据直接写入不同的表,还能写入分区、hdfs和本地目录
这样能免除多次扫描输入表的开销。

  • FROM t1  
  •   
  • INSERT OVERWRITE TABLE t2  
  • SELECT t3.c2, count(1)  
  • FROM t3  
  • WHERE t3.c1 <= 20  
  • GROUP BY t3.c2  
  •   
  • INSERT OVERWRITE DIRECTORY '/output_dir'  
  • SELECT t3.c2, avg(t3.c1)  
  • FROM t3  
  • WHERE t3.c1 > 20 AND t3.c1 <= 30  
  • GROUP BY t3.c2  
  •   
  • INSERT OVERWRITE LOCAL DIRECTORY '/home/dir'  
  • SELECT t3.c2, sum(t3.c1)  
  • FROM t3  
  • WHERE t3.c1 > 30  
  • GROUP BY t3.c2;  

复制代码
  
实际实例

创建一个表
CREATE TABLE u_data (
userid INT,
movieid INT,
rating INT,
unixtime STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '/t'
STORED AS TEXTFILE;

下载示例数据文件,并解压缩
wget http://www.grouplens.org/system/files/ml-data.tar__0.gz
tar xvzf ml-data.tar__0.gz

加载数据到表中:
LOAD DATA LOCAL INPATH 'ml-data/u.data'
OVERWRITE INTO TABLE u_data;

统计数据总量:
SELECT COUNT(1) FROM u_data;

现在做一些复杂的数据分析:
创建一个 weekday_mapper.py: 文件,作为数据按周进行分割 
import sys
import datetime

for line in sys.stdin:
line = line.strip()
userid, movieid, rating, unixtime = line.split('/t')

生成数据的周信息
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print '/t'.join([userid, movieid, rating, str(weekday)])

使用映射脚本
//创建表,按分割符分割行中的字段值
CREATE TABLE u_data_new (
userid INT,
movieid INT,
rating INT,
weekday INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '/t';
//将python文件加载到系统
add FILE weekday_mapper.py;

将数据按周进行分割
INSERT OVERWRITE TABLE u_data_new
SELECT
TRANSFORM (userid, movieid, rating, unixtime)
USING 'python weekday_mapper.py'
AS (userid, movieid, rating, weekday)
FROM u_data;

SELECT weekday, COUNT(1)
FROM u_data_new
GROUP BY weekday;

处理Apache Weblog 数据
将WEB日志先用正则表达式进行组合,再按需要的条件进行组合输入到表中
add jar ../build/contrib/hive_contrib.jar;

CREATE TABLE apachelog (
host STRING,
identity STRING,
user STRING,
time STRING,
request STRING,
status STRING,
size STRING,
referer STRING,
agent STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|//[[^//]]*//]) ([^ /"]*|/"[^/"]*/") (-|[0-9]*) (-|[0-9]*)(?: ([^ /"]*|/"[^/"]*/") ([^ /"]*|/"[^/"]*/"))?",
"output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s"
)
STORED AS TEXTFILE;

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-313244-1-1.html 上篇帖子: hadoop 1.0.4 fsimage 文件格式分析 下篇帖子: Hadoop之Cloudera Manager安装问题总结【转】
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表