|
本博客属原创文章,转载请注明出处:http://guoyunsky.iyunv.com/blog/1233733
请先阅读:
1.Hadoop MapReduce 学习笔记(一) 序言和准备
2.Hadoop MapReduce 学习笔记(二) 序言和准备 2
3.Hadoop MapReduce 学习笔记(三) MapReduce实现类似SQL的SELECT MAX(ID)
4.Hadoop MapReduce 学习笔记(四) MapReduce实现类似SQL的SELECT MAX(ID) 2 一些改进
5.Hadoop MapReduce 学习笔记(五) MapReduce实现类似SQL的max和min
6.Hadoop MapReduce 学习笔记(六) MapReduce实现类似SQL的max和min 正确写法
下一篇: Hadoop MapReduce 学习笔记(八) MapReduce实现类似SQL的order by/排序
Hadoop MapReduce 学习笔记(六) MapReduce实现类似SQL的max和min 正确写法 只是一列,如序言说的,一张表中有多个列呢?比如想找出序言中USER表最大和最小ID的用户数据,类似SQL:
SELECT * FROM USER WHERE ID=MAX(ID) OR ID= MIN(ID);
还是贴上代码吧,这里引入的概念是自己实现Hadoop的输入输出.Hadoop自己的是IntWritalbe,Text等,有如Java的int,String.但我们想实现自己的类呢.请看代码吧:
1.相对Hadoop来说,自己的输入输出类:
package com.guoyun.hadoop.mapreduce.study;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
/**
* 多列数据,这里格式是:frameworkName(String) number(int)
* 等同于数据表
* CREATE TABLE TABLE_NAME(
* FRAMEWORK_NAME VARCHAR(32),
* NUMBER INT
* )
*/
public class MultiColumnWritable implements WritableComparable{
protected String frameworkName="";
protected long number=-1;
public String getFrameworkName() {
return frameworkName;
}
public void setFrameworkName(String frameworkName) {
this.frameworkName = frameworkName;
}
public long getNumber() {
return number;
}
public void setNumber(long number) {
this.number = number;
}
public MultiColumnWritable() {
super();
}
@Override
public int compareTo(Object obj) {
int result=-1;
if(obj instanceof MultiColumnWritable){
MultiColumnWritable mcw=(MultiColumnWritable)obj;
if(mcw.getNumber()<this.getNumber()){
result =1;
}else if(mcw.getNumber()==this.getNumber()){
result=0;
}
}
return result;
}
@Override
public void readFields(DataInput in) throws IOException {
frameworkName=in.readUTF();
number=in.readLong();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(frameworkName);
out.writeLong(number);
}
@Override
public String toString() {
return frameworkName+"\t"+number;
}
}
2.获得最大和最小值
package com.guoyun.hadoop.mapreduce.study;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 或得最大和最小值,类似SQL:SELECT * FROM TABLE WHERE NUMBER=MAX(NUMBER) OR NUMBER=MIN(NUMBER)
* 这里有多列数据,但只取其中一列的最大和最小
* 如果想对其中几列取最大最小值,请自己实现 @MultiColumnWritable
*/
public class GetMaxAndMinValueMultiMapReduceTest extends MyMapReduceMultiColumnTest {
public static final Logger log=LoggerFactory.getLogger(GetMaxAndMinValueMultiMapReduceTest.class);
public GetMaxAndMinValueMultiMapReduceTest(long dataLength) throws Exception {
super(dataLength);
// TODO Auto-generated constructor stub
}
public GetMaxAndMinValueMultiMapReduceTest(String outputPath) throws Exception {
super(outputPath);
// TODO Auto-generated constructor stub
}
public GetMaxAndMinValueMultiMapReduceTest(long dataLength, String inputPath,
String outputPath) throws Exception {
super(dataLength, inputPath, outputPath);
// TODO Auto-generated constructor stub
}
public static class MyCombiner
extends Reducer<Text,MultiColumnWritable,Text,MultiColumnWritable>{
private final Text maxValueKey=new Text("maxValue");
private final Text minValueKey=new Text("minValue");
@Override
public void reduce(Text key, Iterable<MultiColumnWritable> values,Context context)
throws IOException, InterruptedException {
log.debug("begin to combine");
long maxValue=Long.MIN_VALUE;
String maxFrameworkName="";
long minValue=Long.MAX_VALUE;
String minFrameworkName="";
long valueTmp=0;
String nameTmp="";
MultiColumnWritable writeValue=new MultiColumnWritable();
for(MultiColumnWritable value:values){
valueTmp=value.getNumber();
nameTmp=value.getFrameworkName();
// 其实可以用他们的compare方法
if(valueTmp>maxValue){
maxValue=valueTmp;
maxFrameworkName=nameTmp;
}else if(valueTmp<minValue){
minValue=valueTmp;
minFrameworkName=nameTmp;
}
}
writeValue.setFrameworkName(maxFrameworkName);
writeValue.setNumber(maxValue);
context.write(maxValueKey, writeValue);
writeValue.setFrameworkName(minFrameworkName);
writeValue.setNumber(minValue);
context.write(minValueKey, writeValue);
}
}
/**
* Reduce,to get the max value
*/
public static class MyReducer
extends Reducer<Text,MultiColumnWritable,Text,MultiColumnWritable>{
private final Text maxValueKey=new Text("maxValue");
private final Text minValueKey=new Text("minValue");
@Override
public void run(Context context) throws IOException, InterruptedException {
long maxValue=Long.MIN_VALUE;
long minValue=Long.MAX_VALUE;
long tmpValue=0;
String tmpFrameworkName="";
String tmpKey="";
String maxFrameworkName="";
String minFrameworkName="";
MultiColumnWritable writeValue=new MultiColumnWritable();
MultiColumnWritable tmpWrite=null;
try {
setup(context);
while(context.nextKey()){
tmpKey=context.getCurrentKey().toString();
tmpWrite=(MultiColumnWritable)context.getCurrentValue();
tmpValue=tmpWrite.getNumber();
tmpFrameworkName=tmpWrite.getFrameworkName();
if(tmpKey.equals("maxValue")){
if(tmpValue>maxValue){
maxValue=tmpValue;
maxFrameworkName=tmpFrameworkName;
}
}else if(tmpKey.equals("minValue")){
if(tmpValue<minValue){
minValue=tmpValue;
minFrameworkName=tmpFrameworkName;
}
}
}
writeValue.setFrameworkName(maxFrameworkName);
writeValue.setNumber(maxValue);
context.write(maxValueKey, writeValue);
writeValue.setFrameworkName(minFrameworkName);
writeValue.setNumber(minValue);
context.write(minValueKey, writeValue);
} catch (Exception e) {
log.debug(e.getMessage());
}finally{
cleanup(context);
}
}
@Override
protected void cleanup(Context context) throws IOException,
InterruptedException {
// TODO Auto-generated method stub
super.cleanup(context);
}
@Override
protected void setup(Context context) throws IOException,
InterruptedException {
// TODO Auto-generated method stub
super.setup(context);
}
}
/**
* @param args
*/
public static void main(String[] args) {
MyMapReduceTest mapReduceTest=null;
Configuration conf=null;
Job job=null;
FileSystem fs=null;
Path inputPath=null;
Path outputPath=null;
long begin=0;
String input="testDatas/mapreduce/MRInput_Multi_getMaxAndMin";
String output="testDatas/mapreduce/MROutput_Multi_getMaxAndMin";
try {
mapReduceTest=new GetMaxAndMinValueMultiMapReduceTest(2000000,input,output);
inputPath=new Path(mapReduceTest.getInputPath());
outputPath=new Path(mapReduceTest.getOutputPath());
conf=new Configuration();
job=new Job(conf,"getMaxAndMinValueMulti");
fs=FileSystem.getLocal(conf);
if(fs.exists(outputPath)){
if(!fs.delete(outputPath,true)){
System.err.println("Delete output file:"+mapReduceTest.getOutputPath()+" failed!");
return;
}
}
job.setJarByClass(GetMaxAndMinValueMultiMapReduceTest.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(MultiColumnWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(MultiColumnWritable.class);
job.setMapperClass(MultiSupMapper.class);
job.setCombinerClass(MyCombiner.class);
job.setReducerClass(MyReducer.class);
job.setNumReduceTasks(2);
FileInputFormat.addInputPath(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
begin=System.currentTimeMillis();
job.waitForCompletion(true);
System.out.println("===================================================");
if(mapReduceTest.isGenerateDatas()){
System.out.println("The maxValue is:"+mapReduceTest.getMaxValue());
System.out.println("The minValue is:"+mapReduceTest.getMinValue());
}
System.out.println("Spend time:"+(System.currentTimeMillis()-begin));
// Spend time:13361
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
更多文章、感悟、分享、勾搭,请用微信扫描:
|
|