设为首页 收藏本站
查看: 496|回复: 0

[经验分享] Nginx 配置指令的执行顺序(四)access_by_lua & 性能比较 (转载)

[复制链接]
发表于 2016-12-28 08:35:04 | 显示全部楼层 |阅读模式
  转载自 http://blog.sina.com.cn/openresty
  ngx_lua 模块提供了配置指令 access_by_lua,用于在 access 请求处理阶段插入用户 Lua 代码。这条指令运行于 access 阶段的末尾,因此总是在 allow 和 deny 这样的指令之后运行,虽然它们同属 access 阶段。一般我们通过 access_by_lua 在 ngx_access 这样的模块检查过客户端 IP 地址之后,再通过 Lua 代码执行一系列更为复杂的请求验证操作,比如实时查询数据库或者其他后端服务,以验证当前用户的身份或权限。
  我们来看一个简单的例子,利用 access_by_lua 来实现 ngx_access 模块的 IP 地址过滤功能:
  location /hello {
  access_by_lua '
  if ngx.var.remote_addr == "127.0.0.1" then
  return
  end
  ngx.exit(403)
  ';
  echo "hello world";
  }
  这里在 Lua 代码中通过引用 Nginx 标准的内建变量 $remote_addr 来获取字符串形式的客户端 IP 地址,然后用 Lua 的 if 语句判断是否为本机地址,即是否等于 127.0.0.1. 如果是本机地址,则直接利用 Lua 的 return 语句返回,让 Nginx 继续执行后续的请求处理阶段(包括 echo 指令所处的 content 阶段);而如果不是本机地址,则通过 ngx_lua 模块提供的 Lua 函数 ngx.exit 中断当前的整个请求处理流程,直接返回 403 错误页给客户端。
  这个例子在功能上完全等价于先前在 (三) 中介绍过的那个使用 ngx_access 模块的例子:
  location /hello {
  allow 127.0.0.1;
  deny all;
  echo "hello world";
  }
  虽然这两个例子在功能上完全相同,但在性能上还是有区别的,毕竟 ngx_access 是用纯 C 实现的专门化的 Nginx 模块。
  下面我们不妨来实际测量一下这两个例子的性能差别。因为我们使用 Nginx 就是为了追求性能,而量化的性能比较,在工程上具有很大的现实意义,所以我们顺便介绍一下重要的测量技术。由于无论是 ngx_access 还是 ngx_lua 在进行 IP 地址验证方面的性能都非常之高,所以为了减少测量误差,我们希望能对 access 阶段的用时进行直接测量。为了做到这一点,传统的做法一般会涉及到修改 Nginx 源码,自己插入专门的计时代码和统计输出代码,抑或是重新编译 Nginx 以启用像 GNU gprof 这样专门的性能监测工具。
  幸运的是,在新一点的 Solaris, Mac OS X, 以及 FreeBSD 等系统上存在一个叫做 dtrace 的工具,可以对任意的用户程序进行微观性能分析(以及行为分析),而无须对用户程序的源码进行修改或者对用户程序进行重新编译。因为 Mac OS X 10.5 以后就自带了 dtrace,所以为方便起见,下面在我的 MacBook Air 笔记本上演示一下这里的测量过程。
  首先,在 Mac OS X 系统中打开一个命令行终端,在某一个文件目录下面创建一个名为 nginx-access-time.d 的文件,并编辑内容如下:
  #!/usr/bin/env dtrace -s
  pid$1::ngx_http_handler:entry
  {
  elapsed = 0;
  }
  pid$1::ngx_http_core_access_phase:entry
  {
  begin = timestamp;
  }
  pid$1::ngx_http_core_access_phase:return
  /begin > 0/
  {
  elapsed += timestamp - begin;
  begin = 0;
  }
  pid$1::ngx_http_finalize_request:return
  /elapsed > 0/
  {
  @elapsed = avg(elapsed);
  elapsed = 0;
  }
  保存好此文件后,再赋予它可执行权限:
  $ chmod +x ./nginx-access-time.d
  这个 .d 文件中的代码是用 dtrace 工具自己提供的 D 语言来编写的(注意,这里的 D 语言并不同于 Walter Bright 作为另一种“更好的 C++”而设计的 D 语言)。由于本系列教程并不打算介绍如何编写 dtrace 的 D 脚本,同时理解这个脚本需要不少有关 Nginx 内部源码实现的细节,所以这里我们不展开介绍。大家只需要知道这个脚本的功能是:统计指定的 Nginx worker 进程在处理每个请求时,平均花费在 access 阶段上的时间。
  现在来演示一下这个 D 脚本的运行方法。这个脚本接受一个命令行参数用于指定监视的 Nginx worker 进程的进程号(pid)。由于 Nginx 支持多 worker 进程,所以我们测试时发起的 HTTP 请求可能由其中任意一个 worker 进程服务。为了确保所有测试请求都为固定的 worker 进程处理,不妨在 nginx.conf 配置文件中指定只启用一个 worker 进程:
  worker_processes 1;
  重启 Nginx 服务器之后,可以利用 ps 命令得到当前 worker 进程的进程号:
  $ ps ax|grep nginx|grep worker|grep -v grep
  在我机器上的一次典型输出是
  10975   ??  S      0:34.28 nginx: worker process
  其中第一列的数值便是我的 nginx worker 进程的进程号,10975。如果你得到的输出不止一行,则通常意味着你的系统中同时运行着多个 Nginx 服务器实例,或者当前 Nginx 实例启用了多个 worker 进程。
  接下来使用刚刚得到的 worker 进程号以及 root 身份来运行 nginx-access-time.d 脚本:
  $ sudo ./nginx-access-time.d 10975
  如果一切正常,则会看到这样一行输出:
  dtrace: script './nginx-access-time.d' matched 4 probes
  这行输出是说,我们的 D 脚本已成功向目标进程动态植入了 4 个 dtrace “探针”(probe)。紧接着这个脚本就挂起了,表明 dtrace 工具正在对进程 10975 进行持续监视。
  然后我们再打开一个新终端,在那里使用 curl 这样的工具多次请求我们正在监视的接口
  $ curl 'http://localhost:8080/hello'
  hello world
  $ curl 'http://localhost:8080/hello'
  hello world
  最后我们回到原先那个一直在运行 D 脚本的终端,按下 Ctrl-C 组合键中止 dtrace 的运行。而该脚本在退出时会向终端打印出最终统计结果。例如我的终端此时是这个样子的:
  $ sudo ./nginx-access-time.d 10975
  dtrace: script './nginx-access-time.d' matched 4 probes
  ^C
  19219
  最后一行输出 19219 便是那几次 curl 请求在 access 阶段的平均用时(以纳秒,即 10 的负 9 次方秒为单位)。
  通过上面介绍的步骤,可以通过 nginx-access-time.d 脚本分别统计出各种不同的 Nginx 配置下 access 阶段的平均用时。针对我们感兴趣的三种情况可以进行三组平行试验,即使用 ngx_access 过滤 IP 地址的情况,使用 access_by_lua 过滤 IP 地址的情况,以及不在 access 阶段使用任何配置指令的情况。最后一种情况属于“空白对照组”,用于校正测试过程中因 dtrace 探针等其他因素而引入的“系统误差”。另外,为了最小化各种不可控的“随机误差”,可以用 ab 这样的批量测试工具来取代 curl 发起连续十万次以上的请求,例如
  $ ab -k -c1 -n100000 'http://127.0.0.1:8080/hello'
  这样我们的 D 脚本统计出来的平均值将更加接近“真实值”。
  在我的苹果系统上,一次典型的测试结果如下:
  ngx_access 组               18146
  access_by_lua 组            35011
  空白对照组                   15887
  把前两组的结果分别减去“空白对照组”的结果可以得到
  ngx_access 组               2259
  access_by_lua 组           19124
  可以看到,ngx_access 组比 access_by_lua 组快了大约一个数量级,这正是我们所预期的。不过其绝对时间差是极小的,对于我的 Intel Core2Duo 1.86 GHz 的 CPU 而言,也只有区区十几微秒,或者说是在十万分之一秒的量级。
  当然,上面使用 access_by_lua 的例子还可以通过换用 $binary_remote_addr 内建变量进行优化,因为 $binary_remote_addr 读出的是二进制形式的 IP 地址,而 $remote_addr 则返回更长一些的字符串形式的地址。更短的地址意味着用 Lua 进行字符串比较时通常可以更快。
  值得注意的是,如果按 (一) 中介绍的方法为 Nginx 开启了“调试日志”的话,上面统计出来的时间会显著增加,因为“调试日志”自身的开销是很大的。

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-320389-1-1.html 上篇帖子: 修改PHP服务器文件上传大小限制-apache,lighttpd,nginx 下篇帖子: Nginx的location匹配规则和全局变量
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表