设为首页 收藏本站
查看: 1736|回复: 0

[经验分享] Python计算KS值并绘制KS曲线

[复制链接]

尚未签到

发表于 2018-8-8 07:41:31 | 显示全部楼层 |阅读模式
####################### PlotKS ##########################  def PlotKS(preds, labels, n, asc):
  # preds is score: asc=1
  # preds is prob: asc=0
  pred = preds  # 预测值
  bad = labels  # 取1为bad, 0为good
  ksds = DataFrame({'bad': bad, 'pred': pred})
  ksds['good'] = 1 - ksds.bad
  if asc == 1:
  ksds1 = ksds.sort_values(by=['pred', 'bad'], ascending=[True, True])
  elif asc == 0:
  ksds1 = ksds.sort_values(by=['pred', 'bad'], ascending=[False, True])
  ksds1.index = range(len(ksds1.pred))
  ksds1['cumsum_good1'] = 1.0*ksds1.good.cumsum()/sum(ksds1.good)
  ksds1['cumsum_bad1'] = 1.0*ksds1.bad.cumsum()/sum(ksds1.bad)
  if asc == 1:
  ksds2 = ksds.sort_values(by=['pred', 'bad'], ascending=[True, False])
  elif asc == 0:
  ksds2 = ksds.sort_values(by=['pred', 'bad'], ascending=[False, False])
  ksds2.index = range(len(ksds2.pred))
  ksds2['cumsum_good2'] = 1.0*ksds2.good.cumsum()/sum(ksds2.good)
  ksds2['cumsum_bad2'] = 1.0*ksds2.bad.cumsum()/sum(ksds2.bad)
  # ksds1 ksds2 -> average
  ksds = ksds1[['cumsum_good1', 'cumsum_bad1']]
  ksds['cumsum_good2'] = ksds2['cumsum_good2']
  ksds['cumsum_bad2'] = ksds2['cumsum_bad2']
  ksds['cumsum_good'] = (ksds['cumsum_good1'] + ksds['cumsum_good2'])/2
  ksds['cumsum_bad'] = (ksds['cumsum_bad1'] + ksds['cumsum_bad2'])/2
  # ks
  ksds['ks'] = ksds['cumsum_bad'] - ksds['cumsum_good']
  ksds['tile0'] = range(1, len(ksds.ks) + 1)
  ksds['tile'] = 1.0*ksds['tile0']/len(ksds['tile0'])
  qe = list(np.arange(0, 1, 1.0/n))
  qe.append(1)
  qe = qe[1:]
  ks_index = Series(ksds.index)
  ks_index = ks_index.quantile(q = qe)
  ks_index = np.ceil(ks_index).astype(int)
  ks_index = list(ks_index)
  ksds = ksds.loc[ks_index]
  ksds = ksds[['tile', 'cumsum_good', 'cumsum_bad', 'ks']]
  ksds0 = np.array([[0, 0, 0, 0]])
  ksds = np.concatenate([ksds0, ksds], axis=0)
  ksds = DataFrame(ksds, columns=['tile', 'cumsum_good', 'cumsum_bad', 'ks'])
  ks_value = ksds.ks.max()
  ks_pop = ksds.tile[ksds.ks.idxmax()]
  print ('ks_value is ' + str(np.round(ks_value, 4)) + ' at pop = ' + str(np.round(ks_pop, 4)))
  # chart
  plt.plot(ksds.tile, ksds.cumsum_good, label='cum_good',
  color='blue', linestyle='-', linewidth=2)
  plt.plot(ksds.tile, ksds.cumsum_bad, label='cum_bad',
  color='red', linestyle='-', linewidth=2)
  plt.plot(ksds.tile, ksds.ks, label='ks',
  color='green', linestyle='-', linewidth=2)
  plt.axvline(ks_pop, color='gray', linestyle='--')
  plt.axhline(ks_value, color='green', linestyle='--')
  plt.axhline(ksds.loc[ksds.ks.idxmax(), 'cumsum_good'], color='blue', linestyle='--')
  plt.axhline(ksds.loc[ksds.ks.idxmax(),'cumsum_bad'], color='red', linestyle='--')
  plt.title('KS=%s ' %np.round(ks_value, 4) +
  'at Pop=%s' %np.round(ks_pop, 4), fontsize=15)
  return ksds
  ####################### over ##########################

运维网声明 1、欢迎大家加入本站运维交流群:群②:261659950 群⑤:202807635 群⑦870801961 群⑧679858003
2、本站所有主题由该帖子作者发表,该帖子作者与运维网享有帖子相关版权
3、所有作品的著作权均归原作者享有,请您和我们一样尊重他人的著作权等合法权益。如果您对作品感到满意,请购买正版
4、禁止制作、复制、发布和传播具有反动、淫秽、色情、暴力、凶杀等内容的信息,一经发现立即删除。若您因此触犯法律,一切后果自负,我们对此不承担任何责任
5、所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其内容的准确性、可靠性、正当性、安全性、合法性等负责,亦不承担任何法律责任
6、所有作品仅供您个人学习、研究或欣赏,不得用于商业或者其他用途,否则,一切后果均由您自己承担,我们对此不承担任何法律责任
7、如涉及侵犯版权等问题,请您及时通知我们,我们将立即采取措施予以解决
8、联系人Email:admin@iyunv.com 网址:www.yunweiku.com

所有资源均系网友上传或者通过网络收集,我们仅提供一个展示、介绍、观摩学习的平台,我们不对其承担任何法律责任,如涉及侵犯版权等问题,请您及时通知我们,我们将立即处理,联系人Email:kefu@iyunv.com,QQ:1061981298 本贴地址:https://www.iyunv.com/thread-548389-1-1.html 上篇帖子: python第一天学习总结 下篇帖子: opencv——python(1)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

扫码加入运维网微信交流群X

扫码加入运维网微信交流群

扫描二维码加入运维网微信交流群,最新一手资源尽在官方微信交流群!快快加入我们吧...

扫描微信二维码查看详情

客服E-mail:kefu@iyunv.com 客服QQ:1061981298


QQ群⑦:运维网交流群⑦ QQ群⑧:运维网交流群⑧ k8s群:运维网kubernetes交流群


提醒:禁止发布任何违反国家法律、法规的言论与图片等内容;本站内容均来自个人观点与网络等信息,非本站认同之观点.


本站大部分资源是网友从网上搜集分享而来,其版权均归原作者及其网站所有,我们尊重他人的合法权益,如有内容侵犯您的合法权益,请及时与我们联系进行核实删除!



合作伙伴: 青云cloud

快速回复 返回顶部 返回列表