| 
 | 
	
 
 
   
   
   
Network Working Group                                         P. Calhoun 
Request for Comments: 3588                               Airespace, Inc. 
Category: Standards Track                                    J. Loughney 
                                                                   Nokia 
                                                              E. Guttman 
                                                  Sun Microsystems, Inc. 
                                                                 G. Zorn 
                                                     Cisco Systems, Inc. 
                                                                J. Arkko 
                                                                Ericsson 
                                                          September 2003 
   
                         Diameter Base Protocol 
  Status of this Memo 
  This document specifies an Internet standards track protocol for the 
   Internet community, and requests discussion and suggestions for 
   improvements.  Please refer to the current edition of the "Internet 
   Official Protocol Standards" (STD 1) for the standardization state 
   and status of this protocol.  Distribution of this memo is unlimited. 
  Copyright Notice 
  Copyright (C) The Internet Society (2003).  All Rights Reserved. 
  Abstract 
  The Diameter base protocol is intended to provide an Authentication, 
   Authorization and Accounting (AAA) framework for applications such as 
   network access or IP mobility.  Diameter is also intended to work in 
   both local Authentication, Authorization & Accounting and roaming 
   situations.  This document specifies the message format, transport, 
   error reporting, accounting and security services to be used by all 
   Diameter applications.  The Diameter base application needs to be 
   supported by all Diameter implementations. 
  Conventions Used In This Document 
  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 
   document are to be interpreted as described in BCP 14, RFC 2119 
   [KEYWORD]. 
   
   
   
  Calhoun, et al.             Standards Track                     [Page 1] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
Table of Contents 
  1.  Introduction.................................................   6 
       1.1.   Diameter Protocol.....................................   9 
              1.1.1.   Description of the Document Set..............  10 
       1.2.   Approach to Extensibility.............................  11 
              1.2.1.   Defining New AVP Values......................  11 
              1.2.2.   Creating New AVPs............................  11 
              1.2.3.   Creating New Authentication Applications.....  11 
              1.2.4.   Creating New Accounting Applications.........  12 
              1.2.5.   Application Authentication Procedures........  14 
       1.3.   Terminology...........................................  14 
   2.  Protocol Overview............................................  18 
       2.1.   Transport.............................................  20 
              2.1.1.   SCTP Guidelines..............................  21 
       2.2.   Securing Diameter Messages............................  21 
       2.3.   Diameter Application Compliance.......................  21 
       2.4.   Application Identifiers...............................  22 
       2.5.   Connections vs. Sessions..............................  22 
       2.6.   Peer Table............................................  23 
       2.7.   Realm-Based Routing Table.............................  24 
       2.8.   Role of Diameter Agents...............................  25 
              2.8.1.   Relay Agents.................................  26 
              2.8.2.   Proxy Agents.................................  27 
              2.8.3.   Redirect Agents..............................  28 
              2.8.4.   Translation Agents...........................  29 
       2.9.   End-to-End Security Framework.........................  30 
       2.10.  Diameter Path Authorization...........................  30 
   3.  Diameter Header..............................................  32 
       3.1.   Command Codes.........................................  35 
       3.2.   Command Code ABNF specification.......................  36 
       3.3.   Diameter Command Naming Conventions...................  38 
   4.  Diameter AVPs................................................  38 
       4.1.   AVP Header............................................  39 
              4.1.1.   Optional Header Elements.....................  41 
       4.2.   Basic AVP Data Formats................................  41 
       4.3.   Derived AVP Data Formats..............................  42 
       4.4.   Grouped AVP Values....................................  49 
              4.4.1.   Example AVP with a Grouped Data Type.........  50 
       4.5.   Diameter Base Protocol AVPs...........................  53 
   5.  Diameter Peers...............................................  56 
       5.1.   Peer Connections......................................  56 
       5.2.   Diameter Peer Discovery...............................  56 
       5.3.   Capabilities Exchange.................................  59 
              5.3.1.   Capabilities-Exchange-Request................  60 
              5.3.2.   Capabilities-Exchange-Answer.................  60 
              5.3.3.   Vendor-Id AVP................................  61 
              5.3.4.   Firmware-Revision AVP........................  61 
   
  Calhoun, et al.             Standards Track                     [Page 2] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
              5.3.5.   Host-IP-Address AVP..........................  62 
              5.3.6.   Supported-Vendor-Id AVP......................  62 
              5.3.7.   Product-Name AVP.............................  62 
       5.4.   Disconnecting Peer Connections........................  62 
              5.4.1.   Disconnect-Peer-Request......................  63 
              5.4.2.   Disconnect-Peer-Answer.......................  63 
              5.4.3.   Disconnect-Cause AVP.........................  63 
       5.5.   Transport Failure Detection...........................  64 
              5.5.1.   Device-Watchdog-Request......................  64 
              5.5.2.   Device-Watchdog-Answer.......................  64 
              5.5.3.   Transport Failure Algorithm..................  65 
              5.5.4.   Failover and Failback Procedures.............  65 
       5.6.   Peer State Machine....................................  66 
              5.6.1.   Incoming connections.........................  68 
              5.6.2.   Events.......................................  69 
              5.6.3.   Actions......................................  70 
              5.6.4.   The Election Process.........................  71 
   6.  Diameter Message Processing..................................  71 
       6.1.   Diameter Request Routing Overview.....................  71 
              6.1.1.   Originating a Request........................  73 
              6.1.2.   Sending a Request............................  73 
              6.1.3.   Receiving Requests...........................  73 
              6.1.4.   Processing Local Requests....................  73 
              6.1.5.   Request Forwarding...........................  74 
              6.1.6.   Request Routing..............................  74 
              6.1.7.   Redirecting Requests.........................  74 
              6.1.8.   Relaying and Proxying Requests...............  75 
       6.2.   Diameter Answer Processing............................  76 
              6.2.1.   Processing Received Answers..................  77 
              6.2.2.   Relaying and Proxying Answers................  77 
       6.3.   Origin-Host AVP.......................................  77 
       6.4.   Origin-Realm AVP......................................  78 
       6.5.   Destination-Host AVP..................................  78 
       6.6.   Destination-Realm AVP.................................  78 
       6.7.   Routing AVPs..........................................  78 
              6.7.1.   Route-Record AVP.............................  79 
              6.7.2.   Proxy-Info AVP...............................  79 
              6.7.3.   Proxy-Host AVP...............................  79 
              6.7.4.   Proxy-State AVP..............................  79 
       6.8.   Auth-Application-Id AVP...............................  79 
       6.9.   Acct-Application-Id AVP...............................  79 
       6.10.  Inband-Security-Id AVP................................  79 
       6.11.  Vendor-Specific-Application-Id AVP....................  80 
       6.12.  Redirect-Host AVP.....................................  80 
       6.13.  Redirect-Host-Usage AVP...............................  80 
       6.14.  Redirect-Max-Cache-Time AVP...........................  81 
       6.15.  E2E-Sequence AVP......................................  82 
   
   
Calhoun, et al.             Standards Track                     [Page 3] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   7.  Error Handling...............................................  82 
       7.1.   Result-Code AVP.......................................  84 
              7.1.1.   Informational................................  84 
              7.1.2.   Success......................................  84 
              7.1.3.   Protocol Errors..............................  85 
              7.1.4.   Transient Failures...........................  86 
              7.1.5.   Permanent Failures...........................  86 
       7.2.   Error Bit.............................................  88 
       7.3.   Error-Message AVP.....................................  89 
       7.4.   Error-Reporting-Host AVP..............................  89 
       7.5.   Failed-AVP AVP........................................  89 
       7.6.   Experimental-Result AVP...............................  90 
       7.7.   Experimental-Result-Code AVP..........................  90 
   8.  Diameter User Sessions.......................................  90 
       8.1.   Authorization Session State Machine...................  92 
       8.2.   Accounting Session State Machine......................  96 
       8.3.   Server-Initiated Re-Auth.............................. 101 
              8.3.1.   Re-Auth-Request.............................. 102 
              8.3.2.   Re-Auth-Answer............................... 102 
       8.4.   Session Termination................................... 103 
              8.4.1.   Session-Termination-Request.................. 104 
              8.4.2.   Session-Termination-Answer................... 105 
       8.5.   Aborting a Session.................................... 105 
              8.5.1.   Abort-Session-Request........................ 106 
              8.5.2.   Abort-Session-Answer......................... 106 
       8.6.   Inferring Session Termination from Origin-State-Id.... 107 
       8.7.   Auth-Request-Type AVP................................. 108 
       8.8.   Session-Id AVP........................................ 108 
       8.9.   Authorization-Lifetime AVP............................ 109 
       8.10.  Auth-Grace-Period AVP................................. 110 
       8.11.  Auth-Session-State AVP................................ 110 
       8.12.  Re-Auth-Request-Type AVP.............................. 110 
       8.13.  Session-Timeout AVP................................... 111 
       8.14.  User-Name AVP......................................... 111 
       8.15.  Termination-Cause AVP................................. 111 
       8.16.  Origin-State-Id AVP................................... 112 
       8.17.  Session-Binding AVP................................... 113 
       8.18.  Session-Server-Failover AVP........................... 113 
       8.19.  Multi-Round-Time-Out AVP.............................. 114 
       8.20.  Class AVP............................................. 114 
       8.21.  Event-Timestamp AVP................................... 115 
   9.  Accounting................................................... 115 
       9.1.   Server Directed Model................................. 115 
       9.2.   Protocol Messages..................................... 116 
       9.3.   Application Document Requirements..................... 116 
       9.4.   Fault Resilience...................................... 116 
       9.5.   Accounting Records.................................... 117 
       9.6.   Correlation of Accounting Records..................... 118 
   
  Calhoun, et al.             Standards Track                     [Page 4] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
       9.7.   Accounting Command-Codes.............................. 119 
              9.7.1.   Accounting-Request........................... 119 
              9.7.2.   Accounting-Answer............................ 120 
       9.8.   Accounting AVPs....................................... 121 
              9.8.1.   Accounting-Record-Type AVP................... 121 
              9.8.2.   Acct-Interim-Interval AVP.................... 122 
              9.8.3.   Accounting-Record-Number AVP................. 123 
              9.8.4.   Acct-Session-Id AVP.......................... 123 
              9.8.5.   Acct-Multi-Session-Id AVP.................... 123 
              9.8.6.   Accounting-Sub-Session-Id AVP................ 123 
              9.8.7.   Accounting-Realtime-Required AVP............. 123 
   10. AVP Occurrence Table......................................... 124 
       10.1.  Base Protocol Command AVP Table....................... 124 
       10.2.  Accounting AVP Table.................................. 126 
   11. IANA Considerations.......................................... 127 
       11.1.  AVP Header............................................ 127 
              11.1.1.  AVP Code..................................... 127 
              11.1.2.  AVP Flags.................................... 128 
       11.2.  Diameter Header....................................... 128 
              11.2.1.  Command Codes................................ 128 
              11.2.2.  Command Flags................................ 129 
       11.3.  Application Identifiers............................... 129 
       11.4.  AVP Values............................................ 129 
              11.4.1.  Result-Code AVP Values....................... 129 
              11.4.2.  Accounting-Record-Type AVP Values............ 130 
              11.4.3.  Termination-Cause AVP Values................. 130 
              11.4.4.  Redirect-Host-Usage AVP Values............... 130 
              11.4.5.  Session-Server-Failover AVP Values........... 130 
              11.4.6.  Session-Binding AVP Values................... 130 
              11.4.7.  Disconnect-Cause AVP Values.................. 130 
              11.4.8.  Auth-Request-Type AVP Values................. 130 
              11.4.9.  Auth-Session-State AVP Values................ 130 
              11.4.10. Re-Auth-Request-Type AVP Values.............. 131 
              11.4.11. Accounting-Realtime-Required AVP Values...... 131 
       11.5.  Diameter TCP/SCTP Port Numbers........................ 131 
       11.6.  NAPTR Service Fields.................................. 131 
   12. Diameter Protocol Related Configurable Parameters............ 131 
   13. Security Considerations...................................... 132 
       13.1.  IPsec Usage........................................... 133 
       13.2.  TLS Usage............................................. 134 
       13.3.  Peer-to-Peer Considerations........................... 134 
   14. References................................................... 136 
       14.1.  Normative References.................................. 136 
       14.2.  Informative References................................ 138 
   15. Acknowledgements............................................. 140 
   Appendix A.  Diameter Service Template........................... 141 
   Appendix B.  NAPTR Example....................................... 142 
   Appendix C.  Duplicate Detection................................. 143 
   
  Calhoun, et al.             Standards Track                     [Page 5] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Appendix D.  Intellectual Property Statement..................... 145 
   Authors' Addresses............................................... 146 
   Full Copyright Statement......................................... 147 
  1.  Introduction 
  Authentication, Authorization and Accounting (AAA) protocols such as 
   TACACS [TACACS] and RADIUS [RADIUS] were initially deployed to 
   provide dial-up PPP [PPP] and terminal server access.  Over time, 
   with the growth of the Internet and the introduction of new access 
   technologies, including wireless, DSL, Mobile IP and Ethernet, 
   routers and network access servers (NAS) have increased in complexity 
   and density, putting new demands on AAA protocols. 
  Network access requirements for AAA protocols are summarized in 
   [AAAREQ].  These include: 
  Failover 
      [RADIUS] does not define failover mechanisms, and as a result, 
      failover behavior differs between implementations.  In order to 
      provide well defined failover behavior, Diameter supports 
      application-layer acknowledgements, and defines failover 
      algorithms and the associated state machine.  This is described in 
      Section 5.5 and [AAATRANS]. 
  Transmission-level security 
      [RADIUS] defines an application-layer authentication and integrity 
      scheme that is required only for use with Response packets.  While 
      [RADEXT] defines an additional authentication and integrity 
      mechanism, use is only required during Extensible Authentication 
      Protocol (EAP) sessions.  While attribute-hiding is supported, 
      [RADIUS] does not provide support for per-packet confidentiality. 
      In accounting, [RADACCT] assumes that replay protection is 
      provided by the backend billing server, rather than within the 
      protocol itself. 
  While [RFC3162] defines the use of IPsec with RADIUS, support for 
      IPsec is not required.  Since within [IKE] authentication occurs 
      only within Phase 1 prior to the establishment of IPsec SAs in 
      Phase 2, it is typically not possible to define separate trust or 
      authorization schemes for each application.  This limits the 
      usefulness of IPsec in inter-domain AAA applications (such as 
      roaming) where it may be desirable to define a distinct 
      certificate hierarchy for use in a AAA deployment.  In order to 
      provide universal support for transmission-level security, and 
      enable both intra- and inter-domain AAA deployments, IPsec support 
      is mandatory in Diameter, and TLS support is optional.  Security 
      is discussed in Section 13. 
   
  Calhoun, et al.             Standards Track                     [Page 6] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Reliable transport 
      RADIUS runs over UDP, and does not define retransmission behavior; 
      as a result, reliability varies between implementations.  As 
      described in [ACCMGMT], this is a major issue in accounting, where 
      packet loss may translate directly into revenue loss.  In order to 
      provide well defined transport behavior, Diameter runs over 
      reliable transport mechanisms (TCP, SCTP) as defined in 
      [AAATRANS]. 
  Agent support 
      [RADIUS] does not provide for explicit support for agents, 
      including Proxies, Redirects and Relays.  Since the expected 
      behavior is not defined, it varies between implementations. 
      Diameter defines agent behavior explicitly; this is described in 
      Section 2.8. 
  Server-initiated messages 
      While RADIUS server-initiated messages are defined in [DYNAUTH], 
      support is optional.  This makes it difficult to implement 
      features such as unsolicited disconnect or 
      reauthentication/reauthorization on demand across a heterogeneous 
      deployment.  Support for server-initiated messages is mandatory in 
      Diameter, and is described in Section 8. 
  Auditability 
      RADIUS does not define data-object security mechanisms, and as a 
      result, untrusted proxies may modify attributes or even packet 
      headers without being detected.  Combined with lack of support for 
      capabilities negotiation, this makes it very difficult to 
      determine what occurred in the event of a dispute.  While 
      implementation of data object security is not mandatory within 
      Diameter, these capabilities are supported, and are described in 
      [AAACMS]. 
  Transition support 
      While Diameter does not share a common protocol data unit (PDU) 
      with RADIUS, considerable effort has been expended in enabling 
      backward compatibility with RADIUS, so that the two protocols may 
      be deployed in the same network.  Initially, it is expected that 
      Diameter will be deployed within new network devices, as well as 
      within gateways enabling communication between legacy RADIUS 
      devices and Diameter agents.  This capability, described in 
      [NASREQ], enables Diameter support to be added to legacy networks, 
      by addition of a gateway or server speaking both RADIUS and 
      Diameter. 
   
   
   
Calhoun, et al.             Standards Track                     [Page 7] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   In addition to addressing the above requirements, Diameter also 
   provides support for the following: 
  Capability negotiation 
      RADIUS does not support error messages, capability negotiation, or 
      a mandatory/non-mandatory flag for attributes.  Since RADIUS 
      clients and servers are not aware of each other's capabilities, 
      they may not be able to successfully negotiate a mutually 
      acceptable service, or in some cases, even be aware of what 
      service has been implemented.  Diameter includes support for error 
      handling (Section 7), capability negotiation (Section 5.3), and 
      mandatory/non-mandatory attribute-value pairs (AVPs) (Section 
      4.1). 
  Peer discovery and configuration 
      RADIUS implementations typically require that the name or address 
      of servers or clients be manually configured, along with the 
      corresponding shared secrets.  This results in a large 
      administrative burden, and creates the temptation to reuse the 
      RADIUS shared secret, which can result in major security 
      vulnerabilities if the Request Authenticator is not globally and 
      temporally unique as required in [RADIUS].  Through DNS, Diameter 
      enables dynamic discovery of peers.  Derivation of dynamic session 
      keys is enabled via transmission-level security. 
  Roaming support 
      The ROAMOPS WG provided a survey of roaming implementations 
      [ROAMREV], detailed roaming requirements [ROAMCRIT], defined the 
      Network Access Identifier (NAI) [NAI], and documented existing 
      implementations (and imitations) of RADIUS-based roaming 
      [PROXYCHAIN].  In order to improve scalability, [PROXYCHAIN] 
      introduced the concept of proxy chaining via an intermediate 
      server, facilitating roaming between providers.  However, since 
      RADIUS does not provide explicit support for proxies, and lacks 
      auditability and transmission-level security features, RADIUS- 
      based roaming is vulnerable to attack from external parties as 
      well as susceptible to fraud perpetrated by the roaming partners 
      themselves.  As a result, it is not suitable for wide-scale 
      deployment on the Internet [PROXYCHAIN].  By providing explicit 
      support for inter-domain roaming and message routing (Sections 2.7 
      and 6), auditability [AAACMS], and transmission-layer security 
      (Section 13) features, Diameter addresses these limitations and 
      provides for secure and scalable roaming. 
  In the decade since AAA protocols were first introduced, the 
   capabilities of Network Access Server (NAS) devices have increased 
   substantially.  As a result, while Diameter is a considerably more 
   sophisticated protocol than RADIUS, it remains feasible to implement 
   
  Calhoun, et al.             Standards Track                     [Page 8] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   within embedded devices, given improvements in processor speeds and 
   the widespread availability of embedded IPsec and TLS 
   implementations. 
  1.1.  Diameter Protocol 
  The Diameter base protocol provides the following facilities: 
  -  Delivery of AVPs (attribute value pairs) 
   -  Capabilities negotiation 
   -  Error notification 
   -  Extensibility, through addition of new commands and AVPs (required 
      in [AAAREQ]). 
   -  Basic services necessary for applications, such as handling of 
      user sessions or accounting 
  All data delivered by the protocol is in the form of an AVP.  Some of 
   these AVP values are used by the Diameter protocol itself, while 
   others deliver data associated with particular applications that 
   employ Diameter.  AVPs may be added arbitrarily to Diameter messages, 
   so long as the required AVPs are included and AVPs that are 
   explicitly excluded are not included.  AVPs are used by the base 
   Diameter protocol to support the following required features: 
  -  Transporting of user authentication information, for the purposes 
      of enabling the Diameter server to authenticate the user. 
  -  Transporting of service specific authorization information, 
      between client and servers, allowing the peers to decide whether a 
      user's access request should be granted. 
  -  Exchanging resource usage information, which MAY be used for 
      accounting purposes, capacity planning, etc. 
  -  Relaying, proxying and redirecting of Diameter messages through a 
      server hierarchy. 
  The Diameter base protocol provides the minimum requirements needed 
   for a AAA protocol, as required by [AAAREQ].  The base protocol may 
   be used by itself for accounting purposes only, or it may be used 
   with a Diameter application, such as Mobile IPv4 [DIAMMIP], or 
   network access [NASREQ].  It is also possible for the base protocol 
   to be extended for use in new applications, via the addition of new 
   commands or AVPs.  At this time the focus of Diameter is network 
   access and accounting applications.  A truly generic AAA protocol 
   used by many applications might provide functionality not provided by 
   Diameter.  Therefore, it is imperative that the designers of new 
   applications understand their requirements before using Diameter. 
   
  Calhoun, et al.             Standards Track                     [Page 9] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   See Section 2.4 for more information on Diameter applications. 
  Any node can initiate a request.  In that sense, Diameter is a peer- 
   to-peer protocol.  In this document, a Diameter Client is a device at 
   the edge of the network that performs access control, such as a 
   Network Access Server (NAS) or a Foreign Agent (FA).  A Diameter 
   client generates Diameter messages to request authentication, 
   authorization, and accounting services for the user.  A Diameter 
   agent is a node that does not authenticate and/or authorize messages 
   locally; agents include proxies, redirects and relay agents.  A 
   Diameter server performs authentication and/or authorization of the 
   user.  A Diameter node MAY act as an agent for certain requests while 
   acting as a server for others. 
  The Diameter protocol also supports server-initiated messages, such 
   as a request to abort service to a particular user. 
  1.1.1.  Description of the Document Set 
  Currently, the Diameter specification consists of a base 
   specification (this document), Transport Profile [AAATRANS] and 
   applications: Mobile IPv4 [DIAMMIP], and NASREQ [NASREQ]. 
  The Transport Profile document [AAATRANS] discusses transport layer 
   issues that arise with AAA protocols and recommendations on how to 
   overcome these issues.  This document also defines the Diameter 
   failover algorithm and state machine. 
  The Mobile IPv4 [DIAMMIP] application defines a Diameter application 
   that allows a Diameter server to perform AAA functions for Mobile 
   IPv4 services to a mobile node. 
  The NASREQ [NASREQ] application defines a Diameter Application that 
   allows a Diameter server to be used in a PPP/SLIP Dial-Up and 
   Terminal Server Access environment.  Consideration was given for 
   servers that need to perform protocol conversion between Diameter and 
   RADIUS. 
  In summary, this document defines the base protocol specification for 
   AAA, which includes support for accounting.  The Mobile IPv4 and the 
   NASREQ  documents describe applications that use this base 
   specification for Authentication, Authorization and Accounting. 
   
   
   
   
  Calhoun, et al.             Standards Track                    [Page 10] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
1.2.  Approach to Extensibility 
  The Diameter protocol is designed to be extensible, using several 
   mechanisms, including: 
  -  Defining new AVP values 
      -  Creating new AVPs 
      -  Creating new authentication/authorization applications 
      -  Creating new accounting applications 
      -  Application authentication procedures 
  Reuse of existing AVP values, AVPs and Diameter applications are 
   strongly recommended.  Reuse simplifies standardization and 
   implementation and avoids potential interoperability issues.  It is 
   expected that command codes are reused; new command codes can only be 
   created by IETF Consensus (see Section 11.2.1). 
  1.2.1.  Defining New AVP Values 
  New applications should attempt to reuse AVPs defined in existing 
   applications when possible, as opposed to creating new AVPs.  For 
   AVPs of type Enumerated, an application may require a new value to 
   communicate some service-specific information. 
  In order to allocate a new AVP value, a request MUST be sent to IANA 
   [IANA], along with an explanation of the new AVP value.  IANA 
   considerations for Diameter are discussed in Section 11. 
  1.2.2.  Creating New AVPs 
  When no existing AVP can be used, a new AVP should be created.  The 
   new AVP being defined MUST use one of the data types listed in 
   Section 4.2. 
  In the event that a logical grouping of AVPs is necessary, and 
   multiple "groups" are possible in a given command, it is recommended 
   that a Grouped AVP be used (see Section 4.4). 
  In order to create a new AVP, a request MUST be sent to IANA, with a 
   specification for the AVP.  The request MUST include the commands 
   that would make use of the AVP. 
  1.2.3.  Creating New Authentication Applications 
  Every Diameter application specification MUST have an IANA assigned 
   Application Identifier (see Section 2.4) or a vendor specific 
   Application Identifier. 
   
   
Calhoun, et al.             Standards Track                    [Page 11] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Should a new Diameter usage scenario find itself unable to fit within 
   an existing application without requiring major changes to the 
   specification, it may be desirable to create a new Diameter 
   application.  Major changes to an application include: 
  -  Adding new AVPs to the command, which have the "M" bit set. 
  -  Requiring a command that has a different number of round trips to 
      satisfy a request (e.g., application foo has a command that 
      requires one round trip, but new application bar has a command 
      that requires two round trips to complete). 
  -  Adding support for an authentication method requiring definition 
      of new AVPs for use with the application.  Since a new EAP 
      authentication method can be supported within Diameter without 
      requiring new AVPs, addition of EAP methods does not require the 
      creation of a new authentication application. 
  Creation of a new application should be viewed as a last resort.  An 
   implementation MAY add arbitrary non-mandatory AVPs to any command 
   defined in an application, including vendor-specific AVPs without 
   needing to define a new application.  Please refer to Section 11.1.1 
   for details. 
  In order to justify allocation of a new application identifier, 
   Diameter applications MUST define one Command Code, or add new 
   mandatory AVPs to the ABNF. 
  The expected AVPs MUST be defined in an ABNF [ABNF] grammar (see 
   Section 3.2).  If the Diameter application has accounting 
   requirements, it MUST also specify the AVPs that are to be present in 
   the Diameter Accounting messages (see Section 9.3).  However, just 
   because a new authentication application id is required, does not 
   imply that a new accounting application id is required. 
  When possible, a new Diameter application SHOULD reuse existing 
   Diameter AVPs, in order to avoid defining multiple AVPs that carry 
   similar information. 
  1.2.4.  Creating New Accounting Applications 
  There are services that only require Diameter accounting.  Such 
   services need to define the AVPs carried in the Accounting-Request 
   (ACR)/ Accounting-Answer (ACA) messages, but do not need to define 
   new command codes.  An implementation MAY add arbitrary non-mandatory 
   AVPs (AVPs with the "M" bit not set) to any command defined in an 
   
   
  Calhoun, et al.             Standards Track                    [Page 12] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   application, including vendor-specific AVPs, without needing to 
   define a new accounting application.  Please refer to Section 11.1.1 
   for details. 
  Application Identifiers are still required for Diameter capability 
   exchange.  Every Diameter accounting application specification MUST 
   have an IANA assigned Application Identifier (see Section 2.4) or a 
   vendor specific Application Identifier. 
  Every Diameter implementation MUST support accounting.  Basic 
   accounting support is sufficient to handle any application that uses 
   the ACR/ACA commands defined in this document, as long as no new 
   mandatory AVPs are added.  A mandatory AVP is defined as one which 
   has the "M" bit set when sent within an accounting command, 
   regardless of whether it is required or optional within the ABNF for 
   the accounting application. 
  The creation of a new accounting application should be viewed as a 
   last resort and MUST NOT be used unless a new command or additional 
   mechanisms (e.g., application defined state machine) is defined 
   within the application, or new mandatory AVPs are added to the ABNF. 
  Within an accounting command, setting the "M" bit implies that a 
   backend server (e.g., billing server) or the accounting server itself 
   MUST understand the AVP in order to compute a correct bill.  If the 
   AVP is not relevant to the billing process, when the AVP is included 
   within an accounting command, it MUST NOT have the "M" bit set, even 
   if the "M" bit is set when the same AVP is used within other Diameter 
   commands (i.e., authentication/authorization commands). 
  A DIAMETER base accounting implementation MUST be configurable to 
   advertise supported accounting applications in order to prevent the 
   accounting server from accepting accounting requests for unbillable 
   services.  The combination of the home domain and the accounting 
   application Id can be used in order to route the request to the 
   appropriate accounting server. 
  When possible, a new Diameter accounting application SHOULD attempt 
   to reuse existing AVPs, in order to avoid defining multiple AVPs that 
   carry similar information. 
  If the base accounting is used without any mandatory AVPs, new 
   commands or additional mechanisms (e.g., application defined state 
   machine), then the base protocol defined standard accounting 
   application Id (Section 2.4) MUST be used in ACR/ACA commands. 
   
   
   
Calhoun, et al.             Standards Track                    [Page 13] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
1.2.5.  Application Authentication Procedures 
  When possible, applications SHOULD be designed such that new 
   authentication methods MAY be added without requiring changes to the 
   application.  This MAY require that new AVP values be assigned to 
   represent the new authentication transform, or any other scheme that 
   produces similar results.  When possible, authentication frameworks, 
   such as Extensible Authentication Protocol [EAP], SHOULD be used. 
  1.3.  Terminology 
  AAA 
      Authentication, Authorization and Accounting. 
  Accounting 
      The act of collecting information on resource usage for the 
      purpose of capacity planning, auditing, billing or cost 
      allocation. 
  Accounting Record 
      An accounting record represents a summary of the resource 
      consumption of a user over the entire session.  Accounting servers 
      creating the accounting record may do so by processing interim 
      accounting events or accounting events from several devices 
      serving the same user. 
  Authentication 
      The act of verifying the identity of an entity (subject). 
  Authorization 
      The act of determining whether a requesting entity (subject) will 
      be allowed access to a resource (object). 
  AVP 
      The Diameter protocol consists of a header followed by one or more 
      Attribute-Value-Pairs (AVPs).  An AVP includes a header and is 
      used to encapsulate protocol-specific data (e.g., routing 
      information) as well as authentication, authorization or 
      accounting information. 
  Broker 
      A broker is a business term commonly used in AAA infrastructures. 
      A broker is either a relay, proxy or redirect agent, and MAY be 
      operated by roaming consortiums.  Depending on the business model, 
      a broker may either choose to  deploy relay agents or proxy 
      agents. 
   
   
  Calhoun, et al.             Standards Track                    [Page 14] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Diameter Agent 
      A Diameter Agent is a Diameter node that provides either relay, 
      proxy, redirect or translation services. 
  Diameter Client 
      A Diameter Client is a device at the edge of the network that 
      performs access control.  An example of a Diameter client is a 
      Network Access Server (NAS) or a Foreign Agent (FA). 
  Diameter Node 
      A Diameter node is a host process that implements the Diameter 
      protocol, and acts either as a Client, Agent or Server. 
  Diameter Peer 
      A Diameter Peer is a Diameter Node to which a given Diameter Node 
      has a direct transport connection. 
  Diameter Security Exchange 
      A Diameter Security Exchange is a process through which two 
      Diameter nodes establish end-to-end security. 
  Diameter Server 
      A Diameter Server is one that handles authentication, 
      authorization and accounting requests for a particular realm.  By 
      its very nature, a Diameter Server MUST support Diameter 
      applications in addition to the base protocol. 
  Downstream 
      Downstream is used to identify the direction of a particular 
      Diameter message from the home server towards the access device. 
  End-to-End Security 
      TLS and IPsec provide hop-by-hop security, or security across a 
      transport connection.  When relays or proxy are involved, this 
      hop-by-hop security does not protect the entire Diameter user 
      session.  End-to-end security is security between two Diameter 
      nodes, possibly communicating through Diameter Agents.  This 
      security protects the entire Diameter communications path from the 
      originating Diameter node to the terminating Diameter node. 
  Home Realm 
      A Home Realm is the administrative domain with which the user 
      maintains an account relationship. 
  Home Server 
      See Diameter Server. 
   
   
  Calhoun, et al.             Standards Track                    [Page 15] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Interim accounting 
      An interim accounting message provides a snapshot of usage during 
      a user's session.  It is typically implemented in order to provide 
      for partial accounting of a user's session in the case of a device 
      reboot or other network problem prevents the reception of a 
      session summary message or session record. 
  Local Realm 
      A local realm is the administrative domain providing services to a 
      user.  An administrative domain MAY act as a local realm for 
      certain users, while being a home realm for others. 
  Multi-session 
      A multi-session represents a logical linking of several sessions. 
      Multi-sessions are tracked by using the Acct-Multi-Session-Id.  An 
      example of a multi-session would be a Multi-link PPP bundle.  Each 
      leg of the bundle would be a session while the entire bundle would 
      be a multi-session. 
  Network Access Identifier 
      The Network Access Identifier, or NAI [NAI], is used in the 
      Diameter protocol to extract a user's identity and realm.  The 
      identity is used to identify the user during authentication and/or 
      authorization, while the realm is used for message routing 
      purposes. 
  Proxy Agent or Proxy 
      In addition to forwarding requests and responses, proxies make 
      policy decisions relating to resource usage and provisioning. 
      This is typically accomplished by tracking the state of NAS 
      devices.  While proxies typically do not respond to client 
      Requests prior to receiving a Response from the server, they may 
      originate Reject messages in cases where policies are violated. 
      As a result, proxies need to understand the semantics of the 
      messages passing through them, and may not support all Diameter 
      applications. 
  Realm 
      The string in the NAI that immediately follows the '@' character. 
      NAI realm names are required to be unique, and are piggybacked on 
      the administration of the DNS namespace.  Diameter makes use of 
      the realm, also loosely referred to as domain, to determine 
      whether messages can be satisfied locally, or whether they must be 
      routed or redirected.  In RADIUS, realm names are not necessarily 
      piggybacked on the DNS namespace but may be independent of it. 
   
   
   
Calhoun, et al.             Standards Track                    [Page 16] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Real-time Accounting 
      Real-time accounting involves the processing of information on 
      resource usage within a defined time window.  Time constraints are 
      typically imposed in order to limit financial risk. 
  Relay Agent or Relay 
      Relays forward requests and responses based on routing-related 
      AVPs and realm routing table entries.  Since relays do not make 
      policy decisions, they do not examine or alter non-routing AVPs. 
      As a result, relays never originate messages, do not need to 
      understand the semantics of messages or non-routing AVPs, and are 
      capable of handling any Diameter application or message type. 
      Since relays make decisions based on information in routing AVPs 
      and realm forwarding tables they do not keep state on NAS resource 
      usage or sessions in progress. 
  Redirect Agent 
      Rather than forwarding requests and responses between clients and 
      servers, redirect agents refer clients to servers and allow them 
      to communicate directly.  Since redirect agents do not sit in the 
      forwarding path, they do not alter any AVPs transiting between 
      client and server.  Redirect agents do not originate messages and 
      are capable of handling any message type, although they may be 
      configured only to redirect messages of certain types, while 
      acting as relay or proxy agents for other types.  As with proxy 
      agents, redirect agents do not keep state with respect to sessions 
      or NAS resources. 
  Roaming Relationships 
      Roaming relationships include relationships between companies and 
      ISPs, relationships among peer ISPs within a roaming consortium, 
      and relationships between an ISP and a roaming consortium. 
  Security Association 
      A security association is an association between two endpoints in 
      a Diameter session which allows the endpoints to communicate with 
      integrity and confidentially, even in the presence of relays 
      and/or proxies. 
  Session 
      A session is a related progression of events devoted to a 
      particular activity.  Each application SHOULD provide guidelines 
      as to when a session begins and ends.  All Diameter packets with 
      the same Session-Identifier are considered to be part of the same 
      session. 
   
   
   
Calhoun, et al.             Standards Track                    [Page 17] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Session state 
      A stateful agent is one that maintains session state information, 
      by keeping track of all authorized active sessions.  Each 
      authorized session is bound to a particular service, and its state 
      is considered active either until it is notified otherwise, or by 
      expiration. 
  Sub-session 
      A sub-session represents a distinct service (e.g., QoS or data 
      characteristics) provided to a given session.  These services may 
      happen concurrently (e.g., simultaneous voice and data transfer 
      during the same session) or serially.  These changes in sessions 
      are tracked with the Accounting-Sub-Session-Id. 
  Transaction state 
      The Diameter protocol requires that agents maintain transaction 
      state, which is used for failover purposes.  Transaction state 
      implies that upon forwarding a request, the Hop-by-Hop identifier 
      is saved; the field is replaced with a locally unique identifier, 
      which is restored to its original value when the corresponding 
      answer is received.  The request's state is released upon receipt 
      of the answer.  A stateless agent is one that only maintains 
      transaction state. 
  Translation Agent 
      A translation agent is a stateful Diameter node that performs 
      protocol translation between Diameter and another AAA protocol, 
      such as RADIUS. 
  Transport Connection 
      A transport connection is a TCP or SCTP connection existing 
      directly between two Diameter peers, otherwise known as a Peer- 
      to-Peer Connection. 
  Upstream 
      Upstream is used to identify the direction of a particular 
      Diameter message from the access device towards the home server. 
  User 
      The entity requesting or using some resource, in support of which 
      a Diameter client has generated a request. 
  2.  Protocol Overview 
  The base Diameter protocol may be used by itself for accounting 
   applications, but for use in authentication and authorization it is 
   always extended for a particular application.  Two Diameter 
   applications are defined by companion documents:  NASREQ [NASREQ], 
   
  Calhoun, et al.             Standards Track                    [Page 18] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Mobile IPv4 [DIAMMIP].  These applications are introduced in this 
   document but specified elsewhere.  Additional Diameter applications 
   MAY be defined in the future (see Section 11.3). 
  Diameter Clients MUST support the base protocol, which includes 
   accounting.  In addition, they MUST fully support each Diameter 
   application that is needed to implement the client's service, e.g., 
   NASREQ and/or Mobile IPv4.  A Diameter Client that does not support 
   both NASREQ and Mobile IPv4, MUST be referred to as "Diameter X 
   Client" where X is the application which it supports, and not a 
   "Diameter Client". 
  Diameter Servers MUST support the base protocol, which includes 
   accounting.  In addition, they MUST fully support each Diameter 
   application that is needed to implement the intended service, e.g., 
   NASREQ and/or Mobile IPv4.  A Diameter Server that does not support 
   both NASREQ and Mobile IPv4, MUST be referred to as "Diameter X 
   Server" where X is the application which it supports, and not a 
   "Diameter Server". 
  Diameter Relays and redirect agents are, by definition, protocol 
   transparent, and MUST transparently support the Diameter base 
   protocol, which includes accounting, and all Diameter applications. 
  Diameter proxies MUST support the base protocol, which includes 
   accounting.  In addition, they MUST fully support each Diameter 
   application that is needed to implement proxied services, e.g., 
   NASREQ and/or Mobile IPv4.  A Diameter proxy which does not support 
   also both NASREQ and Mobile IPv4, MUST be referred to as "Diameter X 
   Proxy" where X is the application which it supports, and not a 
   "Diameter Proxy". 
  The base Diameter protocol concerns itself with capabilities 
   negotiation, how messages are sent and how peers may eventually be 
   abandoned.  The base protocol also defines certain rules that apply 
   to all exchanges of messages between Diameter nodes. 
  Communication between Diameter peers begins with one peer sending a 
   message to another Diameter peer.  The set of AVPs included in the 
   message is determined by a particular Diameter application.  One AVP 
   that is included to reference a user's session is the Session-Id. 
  The initial request for authentication and/or authorization of a user 
   would include the Session-Id.  The Session-Id is then used in all 
   subsequent messages to identify the user's session (see Section 8 for 
   more information).  The communicating party may accept the request, 
   or reject it by returning an answer message with the Result-Code AVP 
   
   
Calhoun, et al.             Standards Track                    [Page 19] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   set to indicate an error occurred.  The specific behavior of the 
   Diameter server or client receiving a request depends on the Diameter 
   application employed. 
  Session state (associated with a Session-Id) MUST be freed upon 
   receipt of the Session-Termination-Request, Session-Termination- 
   Answer, expiration of authorized service time in the Session-Timeout 
   AVP, and according to rules established in a particular Diameter 
   application. 
  2.1.  Transport 
  Transport profile is defined in [AAATRANS]. 
  The base Diameter protocol is run on port 3868 of both TCP [TCP] and 
   SCTP [SCTP] transport protocols. 
  Diameter clients MUST support either TCP or SCTP, while agents and 
   servers MUST support both.  Future versions of this specification MAY 
   mandate that clients support SCTP. 
  A Diameter node MAY initiate connections from a source port other 
   than the one that it declares it accepts incoming connections on, and 
   MUST be prepared to receive connections on port 3868.  A given 
   Diameter instance of the peer state machine MUST NOT use more than 
   one transport connection to communicate with a given peer, unless 
   multiple instances exist on the peer in which case a separate 
   connection per process is allowed. 
  When no transport connection exists with a peer, an attempt to 
   connect SHOULD be periodically made.  This behavior is handled via 
   the Tc timer, whose recommended value is 30 seconds.  There are 
   certain exceptions to this rule, such as when a peer has terminated 
   the transport connection stating that it does not wish to 
   communicate. 
  When connecting to a peer and either zero or more transports are 
   specified, SCTP SHOULD be tried first, followed by TCP.  See Section 
   5.2 for more information on peer discovery. 
  Diameter implementations SHOULD be able to interpret ICMP protocol 
   port unreachable messages as explicit indications that the server is 
   not reachable, subject to security policy on trusting such messages. 
   Diameter implementations SHOULD also be able to interpret a reset 
   from the transport and timed-out connection attempts. 
   
   
   
Calhoun, et al.             Standards Track                    [Page 20] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   If Diameter receives data up from TCP that cannot be parsed or 
   identified as a Diameter error made by the peer, the stream is 
   compromised and cannot be recovered.  The transport connection MUST 
   be closed using a RESET call (send a TCP RST bit) or an SCTP ABORT 
   message (graceful closure is compromised). 
  2.1.1.  SCTP Guidelines 
  The following are guidelines for Diameter implementations that 
   support SCTP: 
  1. For interoperability: All Diameter nodes MUST be prepared to 
      receive Diameter messages on any SCTP stream in the association. 
  2. To prevent blocking: All Diameter nodes SHOULD utilize all SCTP 
      streams available to the association to prevent head-of-the-line 
      blocking. 
  2.2.  Securing Diameter Messages 
  Diameter clients, such as Network Access Servers (NASes) and Mobility 
   Agents MUST support IP Security [SECARCH], and MAY support TLS [TLS]. 
   Diameter servers MUST support TLS and IPsec.  The Diameter protocol 
   MUST NOT be used without any security mechanism (TLS or IPsec). 
  It is suggested that IPsec can be used primarily at the edges and in 
   intra-domain traffic, such as using pre-shared keys between a NAS a 
   local AAA proxy.  This also eases the requirements on the NAS to 
   support certificates.  It is also suggested that inter-domain traffic 
   would primarily use TLS.  See Sections 13.1 and 13.2 for more details 
   on IPsec and TLS usage. 
  2.3.  Diameter Application Compliance 
  Application Identifiers are advertised during the capabilities 
   exchange phase (see Section 5.3).  For a given application, 
   advertising support of an application implies that the sender 
   supports all command codes, and the AVPs specified in the associated 
   ABNFs, described in the specification. 
  An implementation MAY add arbitrary non-mandatory AVPs to any command 
   defined in an application, including vendor-specific AVPs.  Please 
   refer to Section 11.1.1 for details. 
   
   
   
   
Calhoun, et al.             Standards Track                    [Page 21] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
2.4.  Application Identifiers 
  Each Diameter application MUST have an IANA assigned Application 
   Identifier (see Section 11.3).  The base protocol does not require an 
   Application Identifier since its support is mandatory.  During the 
   capabilities exchange, Diameter nodes inform their peers of locally 
   supported applications.  Furthermore, all Diameter messages contain 
   an Application Identifier, which is used in the message forwarding 
   process. 
  The following Application Identifier values are defined: 
  Diameter Common Messages      0 
      NASREQ                        1 [NASREQ] 
      Mobile-IP                     2 [DIAMMIP] 
      Diameter Base Accounting      3 
      Relay                         0xffffffff 
  Relay and redirect agents MUST advertise the Relay Application 
   Identifier, while all other Diameter nodes MUST advertise locally 
   supported applications.  The receiver of a Capabilities Exchange 
   message advertising Relay service MUST assume that the sender 
   supports all current and future applications. 
  Diameter relay and proxy agents are responsible for finding an 
   upstream server that supports the application of a particular 
   message.  If none can be found, an error message is returned with the 
   Result-Code AVP set to DIAMETER_UNABLE_TO_DELIVER. 
  2.5.  Connections vs. Sessions 
  This section attempts to provide the reader with an understanding of 
   the difference between connection and session, which are terms used 
   extensively throughout this document. 
  A connection is a transport level connection between two peers, used 
   to send and receive Diameter messages.  A session is a logical 
   concept at the application layer, and is shared between an access 
   device and a server, and is identified via the Session-Id AVP 
   
   
   
   
   
   
Calhoun, et al.             Standards Track                    [Page 22] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
          +--------+          +-------+          +--------+ 
          | Client |          | Relay |          | Server | 
          +--------+          +-------+          +--------+ 
                           
                peer connection A   peer connection B 
   
                           User session x 
  Figure 1: Diameter connections and sessions 
  In the example provided in Figure 1, peer connection A is established 
   between the Client and its local Relay.  Peer connection B is 
   established between the Relay and the Server.  User session X spans 
   from the Client via the Relay to the Server.  Each "user" of a 
   service causes an auth request to be sent, with a unique session 
   identifier. Once accepted by the server, both the client and the 
   server are aware of the session.  It is important to note that there 
   is no relationship between a connection and a session, and that 
   Diameter messages for multiple sessions are all multiplexed through a 
   single connection. 
  2.6.  Peer Table 
  The Diameter Peer Table is used in message forwarding, and referenced 
   by the Realm Routing Table.  A Peer Table entry contains the 
   following fields: 
  Host identity 
      Following the conventions described for the DiameterIdentity 
      derived AVP data format in Section 4.4. This field contains the 
      contents of the Origin-Host (Section 6.3) AVP found in the CER or 
      CEA message. 
  StatusT 
      This is the state of the peer entry, and MUST match one of the 
      values listed in Section 5.6. 
  Static or Dynamic 
      Specifies whether a peer entry was statically configured, or 
      dynamically discovered. 
  Expiration time 
      Specifies the time at which dynamically discovered peer table 
      entries are to be either refreshed, or expired. 
   
   
   
Calhoun, et al.             Standards Track                    [Page 23] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   TLS Enabled 
      Specifies whether TLS is to be used when communicating with the 
      peer. 
  Additional security information, when needed (e.g., keys, 
   certificates) 
  2.7.  Realm-Based Routing Table 
  All Realm-Based routing lookups are performed against what is 
   commonly known as the Realm Routing Table (see Section 12).  A Realm 
   Routing Table Entry contains the following fields: 
  Realm Name 
      This is the field that is typically used as a primary key in the 
      routing table lookups.  Note that some implementations perform 
      their lookups based on longest-match-from-the-right on the realm 
      rather than requiring an exact match. 
  Application Identifier 
      An application is identified by a vendor id and an application id. 
      For all IETF standards track Diameter applications, the vendor id 
      is zero.  A route entry can have a different destination based on 
      the application identification AVP of the message.  This field 
      MUST be used as a secondary key field in routing table lookups. 
  Local Action 
      The Local Action field is used to identify how a message should be 
      treated.  The following actions are supported: 
  1. LOCAL - Diameter messages that resolve to a route entry with 
         the Local Action set to Local can be satisfied locally, and do 
         not need to be routed to another server. 
  2. RELAY - All Diameter messages that fall within this category 
         MUST be routed to a next hop server, without modifying any 
         non-routing AVPs.  See Section 6.1.8 for relaying guidelines 
  3. PROXY - All Diameter messages that fall within this category 
         MUST be routed to a next hop server.  The local server MAY 
         apply its local policies to the message by including new AVPs 
         to the message prior to routing.  See Section 6.1.8 for 
         proxying guidelines. 
  4. REDIRECT - Diameter messages that fall within this category 
         MUST have the identity of the home Diameter server(s) appended, 
         and returned to the sender of the message.  See Section 6.1.7 
         for redirect guidelines. 
   
  Calhoun, et al.             Standards Track                    [Page 24] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Server Identifier 
      One or more servers the message is to be routed to.  These servers 
      MUST also be present in the Peer table. When the Local Action is 
      set to RELAY or PROXY, this field contains the identity of the 
      server(s) the message must be routed to.  When the Local Action 
      field is set to REDIRECT, this field contains the identity of one 
      or more servers the message should be redirected to. 
  Static or Dynamic 
      Specifies whether a route entry was statically configured, or 
      dynamically discovered. 
  Expiration time 
      Specifies the time which a dynamically discovered route table 
      entry expires. 
  It is important to note that Diameter agents MUST support at least 
   one of the LOCAL, RELAY, PROXY or REDIRECT modes of operation. 
   Agents do not need to support all modes of operation in order to 
   conform with the protocol specification, but MUST follow the protocol 
   compliance guidelines in Section 2.  Relay agents MUST NOT reorder 
   AVPs, and proxies MUST NOT reorder AVPs. 
  The routing table MAY include a default entry that MUST be used for 
   any requests not matching any of the other entries.  The routing 
   table MAY consist of only such an entry. 
  When a request is routed, the target server MUST have advertised the 
   Application Identifier (see Section 2.4) for the given message, or 
   have advertised itself as a relay or proxy agent.  Otherwise, an 
   error is returned with the Result-Code AVP set to 
   DIAMETER_UNABLE_TO_DELIVER. 
  2.8.  Role of Diameter Agents 
  In addition to client and servers, the Diameter protocol introduces 
   relay, proxy, redirect, and translation agents, each of which is 
   defined in Section 1.3.  These Diameter agents are useful for several 
   reasons: 
  -  They can distribute administration of systems to a configurable 
      grouping, including the maintenance of security associations. 
  -  They can be used for concentration of requests from an number of 
      co-located or distributed NAS equipment sets to a set of like user 
      groups. 
  -  They can do value-added processing to the requests or responses. 
   
  Calhoun, et al.             Standards Track                    [Page 25] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   -  They can be used for load balancing. 
  -  A complex network will have multiple authentication sources, they 
      can sort requests and forward towards the correct target. 
  The Diameter protocol requires that agents maintain transaction 
   state, which is used for failover purposes.  Transaction state 
   implies that upon forwarding a request, its Hop-by-Hop identifier is 
   saved; the field is replaced with a locally unique identifier, which 
   is restored to its original value when the corresponding answer is 
   received.  The request's state is released upon receipt of the 
   answer.  A stateless agent is one that only maintains transaction 
   state. 
  The Proxy-Info AVP allows stateless agents to add local state to a 
   Diameter request, with the guarantee that the same state will be 
   present in the answer.  However, the protocol's failover procedures 
   require that agents maintain a copy of pending requests. 
  A stateful agent is one that maintains session state information; by 
   keeping track of all authorized active sessions.  Each authorized 
   session is bound to a particular service, and its state is considered 
   active either until it is notified otherwise, or by expiration.  Each 
   authorized session has an expiration, which is communicated by 
   Diameter servers via the Session-Timeout AVP. 
  Maintaining session state MAY be useful in certain applications, such 
   as: 
  -  Protocol translation (e.g., RADIUS  Diameter) 
  -  Limiting resources authorized to a particular user 
  -  Per user or transaction auditing 
  A Diameter agent MAY act in a stateful manner for some requests and 
   be stateless for others.  A Diameter implementation MAY act as one 
   type of agent for some requests, and as another type of agent for 
   others. 
  2.8.1.  Relay Agents 
  Relay Agents are Diameter agents that accept requests and route 
   messages to other Diameter nodes based on information found in the 
   messages (e.g., Destination-Realm).  This routing decision is 
   performed using a list of supported realms, and known peers.  This is 
   known as the Realm Routing Table, as is defined further in Section 
   2.7. 
   
  Calhoun, et al.             Standards Track                    [Page 26] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Relays MAY be used to aggregate requests from multiple Network Access 
   Servers (NASes) within a common geographical area (POP).  The use of 
   Relays is advantageous since it eliminates the need for NASes to be 
   configured with the necessary security information they would 
   otherwise require to communicate with Diameter servers in other 
   realms.  Likewise, this reduces the configuration load on Diameter 
   servers that would otherwise be necessary when NASes are added, 
   changed or deleted. 
  Relays modify Diameter messages by inserting and removing routing 
   information, but do not modify any other portion of a message. 
   Relays SHOULD NOT maintain session state but MUST maintain 
   transaction state. 
  +------+    --------->     +------+     --------->    +------+ 
    |      |    1. Request     |      |     2. Request    |      | 
    | NAS  |                   | DRL  |                   | HMS  | 
    |      |    4. Answer      |      |     3. Answer     |      | 
    +------+        +------+ 
    |      |    1. Request     |      |     4. Request    |      | 
    | NAS  |                   | DRL  |                   | HMS  | 
    |      |    6. Answer      |      |     5. Answer     |      | 
    +------+        +------+ 
    |      |  RADIUS Request   |      |  Diameter Request |      | 
    | NAS  |                   | TLA  |                   | HMS  | 
    |      |  RADIUS Answer    |      |  Diameter Answer  |      | 
    +------+     
                       { Origin-Host } 
                     1*{ Session-Id } 
                      *[ AVP ] 
  An Example-AVP with Grouped Data follows. 
  The Origin-Host AVP is required (Section 6.3).  In this case: 
  Origin-Host = "example.com". 
   
   
  Calhoun, et al.             Standards Track                    [Page 50] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   One or more Session-Ids must follow.  Here there are two: 
  Session-Id = 
        "grump.example.com:33041;23432;893;0AF3B81" 
  Session-Id = 
        "grump.example.com:33054;23561;2358;0AF3B82" 
  optional AVPs included are 
  Recovery-Policy =  
         2163bc1d0ad82371f6bc09484133c3f09ad74a0dd5346d54195a7cf0b35 
         2cabc881839a4fdcfbc1769e2677a4c1fb499284c5f70b48f58503a45c5 
         c2d6943f82d5930f2b7c1da640f476f0e9c9572a50db8ea6e51e1c2c7bd 
         f8bb43dc995144b8dbe297ac739493946803e1cee3e15d9b765008a1b2a 
         cf4ac777c80041d72c01e691cf751dbf86e85f509f3988e5875dc905119 
         26841f00f0e29a6d1ddc1a842289d440268681e052b30fb638045f7779c 
         1d873c784f054f688f5001559ecff64865ef975f3e60d2fd7966b8c7f92 
  Futuristic-Acct-Record =  
         fe19da5802acd98b07a5b86cb4d5d03f0314ab9ef1ad0b67111ff3b90a0 
         57fe29620bf3585fd2dd9fcc38ce62f6cc208c6163c008f4258d1bc88b8 
         17694a74ccad3ec69269461b14b2e7a4c111fb239e33714da207983f58c 
         41d018d56fe938f3cbf089aac12a912a2f0d1923a9390e5f789cb2e5067 
         d3427475e49968f841 
  The data for the optional AVPs is represented in hex since the format 
   of these AVPs is neither known at the time of definition of the 
   Example-AVP group, nor (likely) at the time when the example instance 
   of this AVP is interpreted - except by Diameter implementations which 
   support the same set of AVPs.  The encoding example illustrates how 
   padding is used and how length fields are calculated.  Also note that 
   AVPs may be present in the Grouped AVP value which the receiver 
   cannot interpret (here, the Recover-Policy and Futuristic-Acct-Record 
   AVPs). 
   
   
   
   
   
   
   
   
Calhoun, et al.             Standards Track                    [Page 51] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   This AVP would be encoded as follows: 
  0       1       2       3       4       5       6       7 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
     0 |     Example AVP Header (AVP Code = 999999), Length = 468      | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
     8 |     Origin-Host AVP Header (AVP Code = 264), Length = 19      | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
    16 |  'e'  |  'x'  |  'a'  |  'm'  |  'p'  |  'l'  |  'e'  |  '.'  | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
    24 |  'c'  |  'o'  |  'm'  |Padding|     Session-Id AVP Header     | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
    32 | (AVP Code = 263), Length = 50 |  'g'  |  'r'  |  'u'  |  'm'  | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
                                     . . . 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
    64 |  'A'  |  'F'  |  '3'  |  'B'  |  '8'  |  '1'  |Padding|Padding| 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
    72 |     Session-Id AVP Header (AVP Code = 263), Length = 51       | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
    80 |  'g'  |  'r'  |  'u'  |  'm'  |  'p'  |  '.'  |  'e'  |  'x'  | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
                                     . . . 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
   104 |  '0'  |  'A'  |  'F'  |  '3'  |  'B'  |  '8'  |  '2'  |Padding| 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
   112 |   Recovery-Policy Header (AVP Code = 8341), Length = 223      | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
   120 |  0x21 | 0x63  | 0xbc  | 0x1d  | 0x0a  | 0xd8  | 0x23  | 0x71  | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
                                     . . . 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
   320 |  0x2f | 0xd7  | 0x96  | 0x6b  | 0x8c  | 0x7f  | 0x92  |Padding| 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
   328 | Futuristic-Acct-Record Header (AVP Code = 15930), Length = 137| 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
   336 |  0xfe | 0x19  | 0xda  | 0x58  | 0x02  | 0xac  | 0xd9  | 0x8b  | 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
                                     . . . 
       +-------+-------+-------+-------+-------+-------+-------+-------+ 
   464 |  0x41 |Padding|Padding|Padding| 
       +-------+-------+-------+-------+ 
   
   
   
   
  Calhoun, et al.             Standards Track                    [Page 52] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
4.5.  Diameter Base Protocol AVPs 
  The following table describes the Diameter AVPs defined in the base 
   protocol, their AVP Code values, types, possible flag values and 
   whether the AVP MAY be encrypted.  For the originator of a Diameter 
   message, "Encr" (Encryption) means that if a message containing that 
   AVP is to be sent via a  Diameter agent (proxy, redirect or relay) 
   then the message MUST NOT be sent unless there is end-to-end security 
   between the originator and the recipient and integrity / 
   confidentiality protection is offered for this AVP OR the originator 
   has locally trusted configuration that indicates that end-to-end 
   security is not needed.  Similarly, for the originator of a Diameter 
   message, a "P" in the "MAY" column means that if a message containing 
   that AVP is to be sent via a  Diameter agent (proxy, redirect or 
   relay) then the message MUST NOT be sent unless there is end-to-end 
   security between the originator and the recipient or the originator 
   has locally trusted configuration that indicates that end-to-end 
   security is not needed. 
  Due to space constraints, the short form DiamIdent is used to 
   represent DiameterIdentity. 
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
Calhoun, et al.             Standards Track                    [Page 53] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
                                            +---------------------+ 
                                            |    AVP Flag rules   | 
                                            |----+-----+----+-----|----+ 
                   AVP  Section             |    |     |SHLD| MUST|    | 
   Attribute Name  Code Defined  Data Type  |MUST| MAY | NOT|  NOT|Encr| 
   -----------------------------------------|----+-----+----+-----|----| 
   Acct-             85  9.8.2   Unsigned32 | M  |  P  |    |  V  | Y  | 
     Interim-Interval                       |    |     |    |     |    | 
   Accounting-      483  9.8.7   Enumerated | M  |  P  |    |  V  | Y  | 
     Realtime-Required                      |    |     |    |     |    | 
   Acct-            50   9.8.5   UTF8String | M  |  P  |    |  V  | Y  | 
     Multi-Session-Id                       |    |     |    |     |    | 
   Accounting-      485  9.8.3   Unsigned32 | M  |  P  |    |  V  | Y  | 
     Record-Number                          |    |     |    |     |    | 
   Accounting-      480  9.8.1   Enumerated | M  |  P  |    |  V  | Y  | 
     Record-Type                            |    |     |    |     |    | 
   Accounting-       44  9.8.4   OctetString| M  |  P  |    |  V  | Y  | 
    Session-Id                              |    |     |    |     |    | 
   Accounting-      287  9.8.6   Unsigned64 | M  |  P  |    |  V  | Y  | 
     Sub-Session-Id                         |    |     |    |     |    | 
   Acct-            259  6.9     Unsigned32 | M  |  P  |    |  V  | N  | 
     Application-Id                         |    |     |    |     |    | 
   Auth-            258  6.8     Unsigned32 | M  |  P  |    |  V  | N  | 
     Application-Id                         |    |     |    |     |    | 
   Auth-Request-    274  8.7     Enumerated | M  |  P  |    |  V  | N  | 
      Type                                  |    |     |    |     |    | 
   Authorization-   291  8.9     Unsigned32 | M  |  P  |    |  V  | N  | 
     Lifetime                               |    |     |    |     |    | 
   Auth-Grace-      276  8.10    Unsigned32 | M  |  P  |    |  V  | N  | 
     Period                                 |    |     |    |     |    | 
   Auth-Session-    277  8.11    Enumerated | M  |  P  |    |  V  | N  | 
     State                                  |    |     |    |     |    | 
   Re-Auth-Request- 285  8.12    Enumerated | M  |  P  |    |  V  | N  | 
     Type                                   |    |     |    |     |    | 
   Class             25  8.20    OctetString| M  |  P  |    |  V  | Y  | 
   Destination-Host 293  6.5     DiamIdent  | M  |  P  |    |  V  | N  | 
   Destination-     283  6.6     DiamIdent  | M  |  P  |    |  V  | N  | 
     Realm                                  |    |     |    |     |    | 
   Disconnect-Cause 273  5.4.3   Enumerated | M  |  P  |    |  V  | N  | 
   E2E-Sequence AVP 300  6.15    Grouped    | M  |  P  |    |  V  | Y  | 
   Error-Message    281  7.3     UTF8String |    |  P  |    | V,M | N  | 
   Error-Reporting- 294  7.4     DiamIdent  |    |  P  |    | V,M | N  | 
     Host                                   |    |     |    |     |    | 
   Event-Timestamp   55  8.21    Time       | M  |  P  |    |  V  | N  | 
   Experimental-    297  7.6     Grouped    | M  |  P  |    |  V  | N  | 
      Result                                |    |     |    |     |    | 
   -----------------------------------------|----+-----+----+-----|----| 
   
   
Calhoun, et al.             Standards Track                    [Page 54] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
                                            +---------------------+ 
                                            |    AVP Flag rules   | 
                                            |----+-----+----+-----|----+ 
                   AVP  Section             |    |     |SHLD| MUST|MAY | 
   Attribute Name  Code Defined  Data Type  |MUST| MAY | NOT|  NOT|Encr| 
   -----------------------------------------|----+-----+----+-----|----| 
   Experimental-    298  7.7     Unsigned32 | M  |  P  |    |  V  | N  | 
      Result-Code                           |    |     |    |     |    | 
   Failed-AVP       279  7.5     Grouped    | M  |  P  |    |  V  | N  | 
   Firmware-        267  5.3.4   Unsigned32 |    |     |    |P,V,M| N  | 
     Revision                               |    |     |    |     |    | 
   Host-IP-Address  257  5.3.5   Address    | M  |  P  |    |  V  | N  | 
   Inband-Security                          | M  |  P  |    |  V  | N  | 
      -Id           299  6.10    Unsigned32 |    |     |    |     |    | 
   Multi-Round-     272  8.19    Unsigned32 | M  |  P  |    |  V  | Y  | 
     Time-Out                               |    |     |    |     |    | 
   Origin-Host      264  6.3     DiamIdent  | M  |  P  |    |  V  | N  | 
   Origin-Realm     296  6.4     DiamIdent  | M  |  P  |    |  V  | N  | 
   Origin-State-Id  278  8.16    Unsigned32 | M  |  P  |    |  V  | N  | 
   Product-Name     269  5.3.7   UTF8String |    |     |    |P,V,M| N  | 
   Proxy-Host       280  6.7.3   DiamIdent  | M  |     |    | P,V | N  | 
   Proxy-Info       284  6.7.2   Grouped    | M  |     |    | P,V | N  | 
   Proxy-State       33  6.7.4   OctetString| M  |     |    | P,V | N  | 
   Redirect-Host    292  6.12    DiamURI    | M  |  P  |    |  V  | N  | 
   Redirect-Host-   261  6.13    Enumerated | M  |  P  |    |  V  | N  | 
      Usage                                 |    |     |    |     |    | 
   Redirect-Max-    262  6.14    Unsigned32 | M  |  P  |    |  V  | N  | 
      Cache-Time                            |    |     |    |     |    | 
   Result-Code      268  7.1     Unsigned32 | M  |  P  |    |  V  | N  | 
   Route-Record     282  6.7.1   DiamIdent  | M  |     |    | P,V | N  | 
   Session-Id       263  8.8     UTF8String | M  |  P  |    |  V  | Y  | 
   Session-Timeout   27  8.13    Unsigned32 | M  |  P  |    |  V  | N  | 
   Session-Binding  270  8.17    Unsigned32 | M  |  P  |    |  V  | Y  | 
   Session-Server-  271  8.18    Enumerated | M  |  P  |    |  V  | Y  | 
     Failover                               |    |     |    |     |    | 
   Supported-       265  5.3.6   Unsigned32 | M  |  P  |    |  V  | N  | 
     Vendor-Id                              |    |     |    |     |    | 
   Termination-     295  8.15    Enumerated | M  |  P  |    |  V  | N  | 
      Cause                                 |    |     |    |     |    | 
   User-Name          1  8.14    UTF8String | M  |  P  |    |  V  | Y  | 
   Vendor-Id        266  5.3.3   Unsigned32 | M  |  P  |    |  V  | N  | 
   Vendor-Specific- 260  6.11    Grouped    | M  |  P  |    |  V  | N  | 
      Application-Id                        |    |     |    |     |    | 
   -----------------------------------------|----+-----+----+-----|----| 
   
   
   
  Calhoun, et al.             Standards Track                    [Page 55] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
5.  Diameter Peers 
  This section describes how Diameter nodes establish connections and 
   communicate with peers. 
  5.1.  Peer Connections 
  Although a Diameter node may have many possible peers that it is able 
   to communicate with, it may not be economical to have an established 
   connection to all of them.  At a minimum, a Diameter node SHOULD have 
   an established connection with two peers per realm, known as the 
   primary and secondary peers.  Of course, a node MAY have additional 
   connections, if it is deemed necessary.  Typically, all messages for 
   a realm are sent to the primary peer, but in the event that failover 
   procedures are invoked, any pending requests are sent to the 
   secondary peer.  However, implementations are free to load balance 
   requests between a set of peers. 
  Note that a given peer MAY act as a primary for a given realm, while 
   acting as a secondary for another realm. 
  When a peer is deemed suspect, which could occur for various reasons, 
   including not receiving a DWA within an allotted timeframe, no new 
   requests should be forwarded to the peer, but failover procedures are 
   invoked.  When an active peer is moved to this mode, additional 
   connections SHOULD be established to ensure that the necessary number 
   of active connections exists. 
  There are two ways that a peer is removed from the suspect peer list: 
  1. The peer is no longer reachable, causing the transport connection 
      to be shutdown.  The peer is moved to the closed state. 
  2. Three watchdog messages are exchanged with accepted round trip 
      times, and the connection to the peer is considered stabilized. 
  In the event the peer being removed is either the primary or 
      secondary, an alternate peer SHOULD replace the deleted peer, and 
      assume the role of either primary or secondary. 
  5.2.  Diameter Peer Discovery 
  Allowing for dynamic Diameter agent discovery will make it possible 
   for simpler and more robust deployment of Diameter services.  In 
   order to promote interoperable implementations of Diameter peer 
   discovery, the following mechanisms are described.  These are based 
   
   
  Calhoun, et al.             Standards Track                    [Page 56] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   on existing IETF standards.  The first option (manual configuration) 
   MUST be supported by all DIAMETER nodes, while the latter two options 
   (SRVLOC and DNS) MAY be supported. 
  There are two cases where Diameter peer discovery may be performed. 
   The first is when a Diameter client needs to discover a first-hop 
   Diameter agent.  The second case is when a Diameter agent needs to 
   discover another agent - for further handling of a Diameter 
   operation.  In both cases, the following 'search order' is 
   recommended: 
  1. The Diameter implementation consults its list of static (manually) 
      configured Diameter agent locations.  These will be used if they 
      exist and respond. 
  2. The Diameter implementation uses SLPv2 [SLP] to discover Diameter 
      services.  The Diameter service template [TEMPLATE] is included in 
      Appendix A. 
  It is recommended that SLPv2 security be deployed (this requires 
      distributing keys to SLPv2 agents).  This is discussed further in 
      Appendix A.  SLPv2 security SHOULD be used (requiring distribution 
      of keys to SLPv2 agents) in order to ensure that discovered peers 
      are authorized for their roles.  SLPv2 is discussed further in 
      Appendix A. 
  3. The Diameter implementation performs a NAPTR query for a server in 
      a particular realm.  The Diameter implementation has to know in 
      advance which realm to look for a Diameter agent in.  This could 
      be deduced, for example, from the 'realm' in a NAI that a Diameter 
      implementation needed to perform a Diameter operation on. 
  3.1 The services relevant for the task of transport protocol 
          selection are those with NAPTR service fields with values 
          "AAA+D2x", where x is a letter that corresponds to a transport 
          protocol supported by the domain.  This specification defines 
          D2T for TCP and D2S for SCTP.  We also establish an IANA 
          registry for NAPTR service name to transport protocol 
          mappings. 
  These NAPTR records provide a mapping from a domain, to the 
          SRV record for contacting a server with the specific transport 
          protocol in the NAPTR services field.  The resource record 
          will contain an empty regular expression and a replacement 
          value, which is the SRV record for that particular transport 
          protocol.  If the server supports multiple transport 
          protocols, there will be multiple NAPTR records, each with a 
          different service value.  As per RFC 2915 [NAPTR], the client 
   
  Calhoun, et al.             Standards Track                    [Page 57] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
          discards any records whose services fields are not applicable. 
          For the purposes of this specification, several rules are 
          defined. 
  3.2 A client MUST discard any service fields that identify a 
          resolution service whose value is not "D2X", for values of X 
          that indicate transport protocols supported by the client. 
          The NAPTR processing as described in RFC 2915 will result in 
          discovery of the most preferred transport protocol of the 
          server that is supported by the client, as well as an SRV 
          record for the server. 
  The domain suffixes in the NAPTR replacement field SHOULD 
          match the domain of the original query. 
  4. If no NAPTR records are found, the requester queries for those 
      address records for the destination address, 
      '_diameter._sctp'.realm or '_diameter._tcp'.realm.  Address 
      records include A RR's, AAAA RR's or other similar records, chosen 
      according to the requestor's network protocol capabilities.  If 
      the DNS server returns no address records, the requestor gives up. 
  If the server is using a site certificate, the domain name in the 
      query and the domain name in the replacement field MUST both be 
      valid based on the site certificate handed out by the server in 
      the TLS or IKE exchange.  Similarly, the domain name in the SRV 
      query and the domain name in the target in the SRV record MUST 
      both be valid based on the same site certificate.  Otherwise, an 
      attacker could modify the DNS records to contain replacement 
      values in a different domain, and the client could not validate 
      that this was the desired behavior, or the result of an attack 
  Also, the Diameter Peer MUST check to make sure that the 
      discovered peers are authorized to act in its role. 
      Authentication via IKE or TLS, or validation of DNS RRs via DNSSEC 
      is not sufficient to conclude this.  For example, a web server may 
      have obtained a valid TLS certificate, and secured RRs may be 
      included in the DNS, but this does not imply that it is authorized 
      to act as a Diameter Server. 
  Authorization can be achieved for example, by configuration of a 
      Diameter Server CA.  Alternatively this can be achieved by 
      definition of OIDs within TLS or IKE certificates so as to signify 
      Diameter Server authorization. 
  A dynamically discovered peer causes an entry in the Peer Table (see 
   Section 2.6) to be created.  Note that entries created via DNS MUST 
   expire (or be refreshed) within the DNS TTL.  If a peer is discovered 
   
  Calhoun, et al.             Standards Track                    [Page 58] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   outside of the local realm, a routing table entry (see Section 2.7) 
   for the peer's realm is created.  The routing table entry's 
   expiration MUST match the peer's expiration value. 
  5.3.  Capabilities Exchange 
  When two Diameter peers establish a transport connection, they MUST 
   exchange the Capabilities Exchange messages, as specified in the peer 
   state machine (see Section 5.6).  This message allows the discovery 
   of a peer's identity and its capabilities (protocol version number, 
   supported Diameter applications, security mechanisms, etc.) 
  The receiver only issues commands to its peers that have advertised 
   support for the Diameter application that defines the command.  A 
   Diameter node MUST cache the supported applications in order to 
   ensure that unrecognized commands and/or AVPs are not unnecessarily 
   sent to a peer. 
  A receiver of a Capabilities-Exchange-Req (CER) message that does not 
   have any applications in common with the sender MUST return a 
   Capabilities-Exchange-Answer (CEA) with the Result-Code AVP set to 
   DIAMETER_NO_COMMON_APPLICATION, and SHOULD disconnect the transport 
   layer connection.  Note that receiving a CER or CEA from a peer 
   advertising itself as a Relay (see Section 2.4) MUST be interpreted 
   as having common applications with the peer. 
  Similarly, a receiver of a Capabilities-Exchange-Req (CER) message 
   that does not have any security mechanisms in common with the sender 
   MUST return a Capabilities-Exchange-Answer (CEA) with the Result-Code 
   AVP set to DIAMETER_NO_COMMON_SECURITY, and SHOULD disconnect the 
   transport layer connection. 
  CERs received from unknown peers MAY be silently discarded, or a CEA 
   MAY be issued with the Result-Code AVP set to DIAMETER_UNKNOWN_PEER. 
   In both cases, the transport connection is closed.  If the local 
   policy permits receiving CERs from unknown hosts, a successful CEA 
   MAY be returned.  If a CER from an unknown peer is answered with a 
   successful CEA, the lifetime of the peer entry is equal to the 
   lifetime of the transport connection.  In case of a transport 
   failure, all the pending transactions destined to the unknown peer 
   can be discarded. 
  The CER and CEA messages MUST NOT be proxied, redirected or relayed. 
  Since the CER/CEA messages cannot be proxied, it is still possible 
   that an upstream agent receives a message for which it has no 
   available peers to handle the application that corresponds to the 
   Command-Code.  In such instances, the 'E' bit is set in the answer 
   
  Calhoun, et al.             Standards Track                    [Page 59] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   message (see Section 7.) with the Result-Code AVP set to 
   DIAMETER_UNABLE_TO_DELIVER to inform the downstream to take action 
   (e.g., re-routing request to an alternate peer). 
  With the exception of the Capabilities-Exchange-Request message, a 
   message of type Request that includes the Auth-Application-Id or 
   Acct-Application-Id AVPs, or a message with an application-specific 
   command code, MAY only be forwarded to a host that has explicitly 
   advertised support for the application (or has advertised the Relay 
   Application Identifier). 
  5.3.1.  Capabilities-Exchange-Request 
  The Capabilities-Exchange-Request (CER), indicated by the Command- 
   Code set to 257 and the Command Flags' 'R' bit set, is sent to 
   exchange local capabilities.  Upon detection of a transport failure, 
   this message MUST NOT be sent to an alternate peer. 
  When Diameter is run over SCTP [SCTP], which allows for connections 
   to span multiple interfaces and multiple IP addresses, the 
   Capabilities-Exchange-Request message MUST contain one Host-IP- 
   Address AVP for each potential IP address that MAY be locally used 
   when transmitting Diameter messages. 
  Message Format 
   ::= < Diameter Header: 257, REQ > 
                { Origin-Host } 
                { Origin-Realm } 
             1* { Host-IP-Address } 
                { Vendor-Id } 
                { Product-Name } 
                [ Origin-State-Id ] 
              * [ Supported-Vendor-Id ] 
              * [ Auth-Application-Id ] 
              * [ Inband-Security-Id ] 
              * [ Acct-Application-Id ] 
              * [ Vendor-Specific-Application-Id ] 
                [ Firmware-Revision ] 
              * [ AVP ] 
  5.3.2.  Capabilities-Exchange-Answer 
  The Capabilities-Exchange-Answer (CEA), indicated by the Command-Code 
   set to 257 and the Command Flags' 'R' bit cleared, is sent in 
   response to a CER message. 
   
   
  Calhoun, et al.             Standards Track                    [Page 60] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   When Diameter is run over SCTP [SCTP], which allows connections to 
   span multiple interfaces, hence, multiple IP addresses, the 
   Capabilities-Exchange-Answer message MUST contain one Host-IP-Address 
   AVP for each potential IP address that MAY be locally used when 
   transmitting Diameter messages. 
  Message Format 
   ::= < Diameter Header: 257 > 
                { Result-Code } 
                { Origin-Host } 
                { Origin-Realm } 
             1* { Host-IP-Address } 
                { Vendor-Id } 
                { Product-Name } 
                [ Origin-State-Id ] 
                [ Error-Message ] 
              * [ Failed-AVP ] 
              * [ Supported-Vendor-Id ] 
              * [ Auth-Application-Id ] 
              * [ Inband-Security-Id ] 
              * [ Acct-Application-Id ] 
              * [ Vendor-Specific-Application-Id ] 
                [ Firmware-Revision ] 
              * [ AVP ] 
  5.3.3.  Vendor-Id AVP 
  The Vendor-Id AVP (AVP Code 266) is of type Unsigned32 and contains 
   the IANA "SMI Network Management Private Enterprise Codes" [ASSIGNNO] 
   value assigned to the vendor of the Diameter application.  In 
   combination with the Supported-Vendor-Id AVP (Section 5.3.6), this 
   MAY be used in order to know which vendor specific attributes may be 
   sent to the peer.  It is also envisioned that the combination of the 
   Vendor-Id, Product-Name (Section 5.3.7) and the Firmware-Revision 
   (Section 5.3.4) AVPs MAY provide very useful debugging information. 
  A Vendor-Id value of zero in the CER or CEA messages is reserved and 
   indicates that this field is ignored. 
  5.3.4.  Firmware-Revision AVP 
  The Firmware-Revision AVP (AVP Code 267) is of type Unsigned32 and is 
   used to inform a Diameter peer of the firmware revision of the 
   issuing device. 
   
   
   
Calhoun, et al.             Standards Track                    [Page 61] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   For devices that do not have a firmware revision (general purpose 
   computers running Diameter software modules, for instance), the 
   revision of the Diameter software module may be reported instead. 
  5.3.5.  Host-IP-Address AVP 
  The Host-IP-Address AVP (AVP Code 257) is of type Address and is used 
   to inform a Diameter peer of the sender's IP address.  All source 
   addresses that a Diameter node expects to use with SCTP [SCTP] MUST 
   be advertised in the CER and CEA messages by including a Host-IP- 
   Address AVP for each address.  This AVP MUST ONLY be used in the CER 
   and CEA messages. 
  5.3.6.  Supported-Vendor-Id AVP 
  The Supported-Vendor-Id AVP (AVP Code 265) is of type Unsigned32 and 
   contains the IANA "SMI Network Management Private Enterprise Codes" 
   [ASSIGNNO] value assigned to a vendor other than the device vendor. 
   This is used in the CER and CEA messages in order to inform the peer 
   that the sender supports (a subset of) the vendor-specific AVPs 
   defined by the vendor identified in this AVP. 
  5.3.7.  Product-Name AVP 
  The Product-Name AVP (AVP Code 269) is of type UTF8String, and 
   contains the vendor assigned name for the product.  The Product-Name 
   AVP SHOULD remain constant across firmware revisions for the same 
   product. 
  5.4.  Disconnecting Peer connections 
  When a Diameter node disconnects one of its transport connections, 
   its peer cannot know the reason for the disconnect, and will most 
   likely assume that a connectivity problem occurred, or that the peer 
   has rebooted.  In these cases, the peer may periodically attempt to 
   reconnect, as stated in Section 2.1.  In the event that the 
   disconnect was a result of either a shortage of internal resources, 
   or simply that the node in question has no intentions of forwarding 
   any Diameter messages to the peer in the foreseeable future, a 
   periodic connection request would not be welcomed.  The 
   Disconnection-Reason AVP contains the reason the Diameter node issued 
   the Disconnect-Peer-Request message. 
  The Disconnect-Peer-Request message is used by a Diameter node to 
   inform its peer of its intent to disconnect the transport layer, and 
   that the peer shouldn't reconnect unless it has a valid reason to do 
   so (e.g., message to be forwarded).  Upon receipt of the message, the 
   
   
Calhoun, et al.             Standards Track                    [Page 62] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Disconnect-Peer-Answer is returned, which SHOULD contain an error if 
   messages have recently been forwarded, and are likely in flight, 
   which would otherwise cause a race condition. 
  The receiver of the Disconnect-Peer-Answer initiates the transport 
   disconnect. 
  5.4.1.  Disconnect-Peer-Request 
  The Disconnect-Peer-Request (DPR), indicated by the Command-Code set 
   to 282 and the Command Flags' 'R' bit set, is sent to a peer to 
   inform its intentions to shutdown the transport connection.  Upon 
   detection of a transport failure, this message MUST NOT be sent to an 
   alternate peer. 
  Message Format 
    ::= < Diameter Header: 282, REQ > 
                 { Origin-Host } 
                 { Origin-Realm } 
                 { Disconnect-Cause } 
  5.4.2.  Disconnect-Peer-Answer 
  The Disconnect-Peer-Answer (DPA), indicated by the Command-Code set 
   to 282 and the Command Flags' 'R' bit cleared, is sent as a response 
   to the Disconnect-Peer-Request message.  Upon receipt of this 
   message, the transport connection is shutdown. 
  Message Format 
    ::= < Diameter Header: 282 > 
                 { Result-Code } 
                 { Origin-Host } 
                 { Origin-Realm } 
                 [ Error-Message ] 
               * [ Failed-AVP ] 
  5.4.3.  Disconnect-Cause AVP 
  The Disconnect-Cause AVP (AVP Code 273) is of type Enumerated.  A 
   Diameter node MUST include this AVP in the Disconnect-Peer-Request 
   message to inform the peer of the reason for its intention to 
   shutdown the transport connection.  The following values are 
   supported: 
   
   
   
Calhoun, et al.             Standards Track                    [Page 63] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   REBOOTING                         0 
      A scheduled reboot is imminent. 
  BUSY                              1 
      The peer's internal resources are constrained, and it has 
      determined that the transport connection needs to be closed. 
  DO_NOT_WANT_TO_TALK_TO_YOU        2 
      The peer has determined that it does not see a need for the 
      transport connection to exist, since it does not expect any 
      messages to be exchanged in the near future. 
  5.5.  Transport Failure Detection 
  Given the nature of the Diameter protocol, it is recommended that 
   transport failures be detected as soon as possible.  Detecting such 
   failures will minimize the occurrence of messages sent to unavailable 
   agents, resulting in unnecessary delays, and will provide better 
   failover performance.  The Device-Watchdog-Request and Device- 
   Watchdog-Answer messages, defined in this section, are used to pro- 
   actively detect transport failures. 
  5.5.1.  Device-Watchdog-Request 
  The Device-Watchdog-Request (DWR), indicated by the Command-Code set 
   to 280 and the Command Flags' 'R' bit set, is sent to a peer when no 
   traffic has been exchanged between two peers (see Section 5.5.3). 
   Upon detection of a transport failure, this message MUST NOT be sent 
   to an alternate peer. 
  Message Format 
    ::= < Diameter Header: 280, REQ > 
                 { Origin-Host } 
                 { Origin-Realm } 
                 [ Origin-State-Id ] 
  5.5.2.  Device-Watchdog-Answer 
  The Device-Watchdog-Answer (DWA), indicated by the Command-Code set 
   to 280 and the Command Flags' 'R' bit cleared, is sent as a response 
   to the Device-Watchdog-Request message. 
   
   
   
   
  Calhoun, et al.             Standards Track                    [Page 64] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Message Format 
    ::= < Diameter Header: 280 > 
                 { Result-Code } 
                 { Origin-Host } 
                 { Origin-Realm } 
                 [ Error-Message ] 
               * [ Failed-AVP ] 
                 [ Original-State-Id ] 
  5.5.3.  Transport Failure Algorithm 
  The transport failure algorithm is defined in [AAATRANS].  All 
   Diameter implementations MUST support the algorithm defined in the 
   specification in order to be compliant to the Diameter base protocol. 
  5.5.4.  Failover and Failback Procedures 
  In the event that a transport failure is detected with a peer, it is 
   necessary for all pending request messages to be forwarded to an 
   alternate agent, if possible.  This is commonly referred to as 
   failover. 
  In order for a Diameter node to perform failover procedures, it is 
   necessary for the node to maintain a pending message queue for a 
   given peer.  When an answer message is received, the corresponding 
   request is removed from the queue.  The Hop-by-Hop Identifier field 
   is used to match the answer with the queued request. 
  When a transport failure is detected, if possible all messages in the 
   queue are sent to an alternate agent with the T flag set.  On booting 
   a Diameter client or agent, the T flag is also set on any records 
   still remaining to be transmitted in non-volatile storage.  An 
   example of a case where it is not possible to forward the message to 
   an alternate server is when the message has a fixed destination, and 
   the unavailable peer is the message's final destination (see 
   Destination-Host AVP).  Such an error requires that the agent return 
   an answer message with the 'E' bit set and the Result-Code AVP set to 
   DIAMETER_UNABLE_TO_DELIVER. 
  It is important to note that multiple identical requests or answers 
   MAY be received as a result of a failover.  The End-to-End Identifier 
   field in the Diameter header along with the Origin-Host AVP MUST be 
   used to identify duplicate messages. 
   
   
   
  Calhoun, et al.             Standards Track                    [Page 65] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   As described in Section 2.1, a connection request should be 
   periodically attempted with the failed peer in order to re-establish 
   the transport connection.  Once a connection has been successfully 
   established, messages can once again be forwarded to the peer.  This 
   is commonly referred to as failback. 
  5.6.  Peer State Machine 
  This section contains a finite state machine that MUST be observed by 
   all Diameter implementations.  Each Diameter node MUST follow the 
   state machine described below when communicating with each peer. 
   Multiple actions are separated by commas, and may continue on 
   succeeding lines, as space requires.  Similarly, state and next state 
   may also span multiple lines, as space requires. 
  This state machine is closely coupled with the state machine 
   described in [AAATRANS], which is used to open, close, failover, 
   probe, and reopen transport connections.  Note in particular that 
   [AAATRANS] requires the use of watchdog messages to probe 
   connections.  For Diameter, DWR and DWA messages are to be used. 
  I- is used to represent the initiator (connecting) connection, while 
   the R- is used to represent the responder (listening) connection. 
   The lack of a prefix indicates that the event or action is the same 
   regardless of the connection on which the event occurred. 
  The stable states that a state machine may be in are Closed, I-Open 
   and R-Open; all other states are intermediate.  Note that I-Open and 
   R-Open are equivalent except for whether the initiator or responder 
   transport connection is used for communication. 
  A CER message is always sent on the initiating connection immediately 
   after the connection request is successfully completed.  In the case 
   of an election, one of the two connections will shut down.  The 
   responder connection will survive if the Origin-Host of the local 
   Diameter entity is higher than that of the peer; the initiator 
   connection will survive if the peer's Origin-Host is higher.  All 
   subsequent messages are sent on the surviving connection.  Note that 
   the results of an election on one peer are guaranteed to be the 
   inverse of the results on the other. 
  For TLS usage, a TLS handshake will begin when both ends are in the 
   open state.  If the TLS handshake is successful, all further messages 
   will be sent via TLS.  If the handshake fails, both ends move to the 
   closed state. 
  The state machine constrains only the behavior of a Diameter 
   implementation as seen by Diameter peers through events on the wire. 
   
  Calhoun, et al.             Standards Track                    [Page 66] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Any implementation that produces equivalent results is considered 
   compliant. 
  state            event              action         next state 
   ----------------------------------------------------------------- 
   Closed           Start            I-Snd-Conn-Req   Wait-Conn-Ack 
                    R-Conn-CER       R-Accept,        R-Open 
                                     Process-CER, 
                                     R-Snd-CEA 
  Wait-Conn-Ack    I-Rcv-Conn-Ack   I-Snd-CER        Wait-I-CEA 
                    I-Rcv-Conn-Nack  Cleanup          Closed 
                    R-Conn-CER       R-Accept,        Wait-Conn-Ack/ 
                                     Process-CER      Elect 
                    Timeout          Error            Closed 
  Wait-I-CEA       I-Rcv-CEA        Process-CEA      I-Open 
                    R-Conn-CER       R-Accept,        Wait-Returns 
                                     Process-CER, 
                                     Elect 
                    I-Peer-Disc      I-Disc           Closed 
                    I-Rcv-Non-CEA    Error            Closed 
                    Timeout          Error            Closed 
  Wait-Conn-Ack/   I-Rcv-Conn-Ack   I-Snd-CER,Elect  Wait-Returns 
   Elect            I-Rcv-Conn-Nack  R-Snd-CEA        R-Open 
                    R-Peer-Disc      R-Disc           Wait-Conn-Ack 
                    R-Conn-CER       R-Reject         Wait-Conn-Ack/ 
                                                      Elect 
                    Timeout          Error            Closed 
  Wait-Returns     Win-Election     I-Disc,R-Snd-CEA R-Open 
                    I-Peer-Disc      I-Disc,          R-Open 
                                     R-Snd-CEA 
                    I-Rcv-CEA        R-Disc           I-Open 
                    R-Peer-Disc      R-Disc           Wait-I-CEA 
                    R-Conn-CER       R-Reject         Wait-Returns 
                    Timeout          Error            Closed 
  R-Open           Send-Message     R-Snd-Message    R-Open 
                    R-Rcv-Message    Process          R-Open 
                    R-Rcv-DWR        Process-DWR,     R-Open 
                                     R-Snd-DWA 
                    R-Rcv-DWA        Process-DWA      R-Open 
                    R-Conn-CER       R-Reject         R-Open 
                    Stop             R-Snd-DPR        Closing 
                    R-Rcv-DPR        R-Snd-DPA,       Closed 
                                           R-Disc 
   
  Calhoun, et al.             Standards Track                    [Page 67] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
                    R-Peer-Disc      R-Disc           Closed 
                    R-Rcv-CER        R-Snd-CEA        R-Open 
                    R-Rcv-CEA        Process-CEA      R-Open 
  I-Open           Send-Message     I-Snd-Message    I-Open 
                    I-Rcv-Message    Process          I-Open 
                    I-Rcv-DWR        Process-DWR,     I-Open 
                                     I-Snd-DWA 
                    I-Rcv-DWA        Process-DWA      I-Open 
                    R-Conn-CER       R-Reject         I-Open 
                    Stop             I-Snd-DPR        Closing 
                    I-Rcv-DPR        I-Snd-DPA,       Closed 
                                     I-Disc 
                    I-Peer-Disc      I-Disc           Closed 
                    I-Rcv-CER        I-Snd-CEA        I-Open 
                    I-Rcv-CEA        Process-CEA      I-Open 
  Closing          I-Rcv-DPA        I-Disc           Closed 
                    R-Rcv-DPA        R-Disc           Closed 
                    Timeout          Error            Closed 
                    I-Peer-Disc      I-Disc           Closed 
                    R-Peer-Disc      R-Disc           Closed 
  5.6.1.  Incoming connections 
  When a connection request is received from a Diameter peer, it is 
   not, in the general case, possible to know the identity of that peer 
   until a CER is received from it.  This is because host and port 
   determine the identity of a Diameter peer; and the source port of an 
   incoming connection is arbitrary.  Upon receipt of CER, the identity 
   of the connecting peer can be uniquely determined from Origin-Host. 
  For this reason, a Diameter peer must employ logic separate from the 
   state machine to receive connection requests, accept them, and await 
   CER.  Once CER arrives on a new connection, the Origin-Host that 
   identifies the peer is used to locate the state machine associated 
   with that peer, and the new connection and CER are passed to the 
   state machine as an R-Conn-CER event. 
  The logic that handles incoming connections SHOULD close and discard 
   the connection if any message other than CER arrives, or if an 
   implementation-defined timeout occurs prior to receipt of CER. 
  Because handling of incoming connections up to and including receipt 
   of CER requires logic, separate from that of any individual state 
   machine associated with a particular peer, it is described separately 
   in this section rather than in the state machine above. 
   
   
Calhoun, et al.             Standards Track                    [Page 68] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
5.6.2.  Events 
  Transitions and actions in the automaton are caused by events.  In 
   this section, we will ignore the -I and -R prefix, since the actual 
   event would be identical, but would occur on one of two possible 
   connections. 
  Start          The Diameter application has signaled that a 
                  connection should be initiated with the peer. 
  R-Conn-CER     An acknowledgement is received stating that the 
                  transport connection has been established, and the 
                  associated CER has arrived. 
  Rcv-Conn-Ack   A positive acknowledgement is received confirming that 
                  the transport connection is established. 
  Rcv-Conn-Nack  A negative acknowledgement was received stating that 
                  the transport connection was not established. 
  Timeout        An application-defined timer has expired while waiting 
                  for some event. 
  Rcv-CER        A CER message from the peer was received. 
  Rcv-CEA        A CEA message from the peer was received. 
  Rcv-Non-CEA    A message other than CEA from the peer was received. 
  Peer-Disc      A disconnection indication from the peer was received. 
  Rcv-DPR        A DPR message from the peer was received. 
  Rcv-DPA        A DPA message from the peer was received. 
  Win-Election   An election was held, and the local node was the 
                  winner. 
  Send-Message   A message is to be sent. 
  Rcv-Message    A message other than CER, CEA, DPR, DPA, DWR or DWA 
                  was received. 
  Stop           The Diameter application has signaled that a 
                  connection should be terminated (e.g., on system 
                  shutdown). 
   
   
  Calhoun, et al.             Standards Track                    [Page 69] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
5.6.3.  Actions 
  Actions in the automaton are caused by events and typically indicate 
   the transmission of packets and/or an action to be taken on the 
   connection.  In this section we will ignore the I- and R-prefix, 
   since the actual action would be identical, but would occur on one of 
   two possible connections. 
  Snd-Conn-Req   A transport connection is initiated with the peer. 
  Accept         The incoming connection associated with the R-Conn-CER 
                  is accepted as the responder connection. 
  Reject         The incoming connection associated with the R-Conn-CER 
                  is disconnected. 
  Process-CER    The CER associated with the R-Conn-CER is processed. 
  Snd-CER        A CER message is sent to the peer. 
  Snd-CEA        A CEA message is sent to the peer. 
  Cleanup        If necessary, the connection is shutdown, and any 
                  local resources are freed. 
  Error          The transport layer connection is disconnected, either 
                  politely or abortively, in response to an error 
                  condition.  Local resources are freed. 
  Process-CEA    A received CEA is processed. 
  Snd-DPR        A DPR message is sent to the peer. 
  Snd-DPA        A DPA message is sent to the peer. 
  Disc           The transport layer connection is disconnected, and 
                  local resources are freed. 
  Elect          An election occurs (see Section 5.6.4 for more 
                  information). 
  Snd-Message    A message is sent. 
  Snd-DWR        A DWR message is sent. 
  Snd-DWA        A DWA message is sent. 
  Process-DWR    The DWR message is serviced. 
   
  Calhoun, et al.             Standards Track                    [Page 70] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Process-DWA    The DWA message is serviced. 
  Process        A message is serviced. 
  5.6.4.  The Election Process 
  The election is performed on the responder.  The responder compares 
   the Origin-Host received in the CER sent by its peer with its own 
   Origin-Host.  If the local Diameter entity's Origin-Host is higher 
   than the peer's, a Win-Election event is issued locally. 
  The comparison proceeds by considering the shorter OctetString to be 
   padded with zeros so that it length is the same as the length of the 
   longer, then performing an octet-by-octet unsigned comparison with 
   the first octet being most significant.  Any remaining octets are 
   assumed to have value 0x80. 
  6.  Diameter message processing 
  This section describes how Diameter requests and answers are created 
   and processed. 
  6.1.  Diameter Request Routing Overview 
  A request is sent towards its final destination using a combination 
   of the Destination-Realm and Destination-Host AVPs, in one of these 
   three combinations: 
  -  a request that is not able to be proxied (such as CER) MUST NOT 
      contain either Destination-Realm or Destination-Host AVPs. 
  -  a request that needs to be sent to a home server serving a 
      specific realm, but not to a specific server (such as the first 
      request of a series of round-trips), MUST contain a Destination- 
      Realm AVP, but MUST NOT contain a Destination-Host AVP. 
  -  otherwise, a request that needs to be sent to a specific home 
      server among those serving a given realm, MUST contain both the 
      Destination-Realm and Destination-Host AVPs. 
  The Destination-Host AVP is used as described above when the 
   destination of the request is fixed, which includes: 
  -  Authentication requests that span multiple round trips 
  -  A Diameter message that uses a security mechanism that makes use 
      of a pre-established session key shared between the source and the 
      final destination of the message. 
   
  Calhoun, et al.             Standards Track                    [Page 71] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   -  Server initiated messages that MUST be received by a specific 
      Diameter client (e.g., access device), such as the Abort-Session- 
      Request message, which is used to request that a particular user's 
      session be terminated. 
  Note that an agent can forward a request to a host described in the 
   Destination-Host AVP only if the host in question is included in its 
   peer table (see Section 2.7).  Otherwise, the request is routed based 
   on the Destination-Realm only (see Sections 6.1.6). 
  The Destination-Realm AVP MUST be present if the message is 
   proxiable.  Request messages that may be forwarded by Diameter agents 
   (proxies, redirects or relays) MUST also contain an Acct- 
   Application-Id AVP, an Auth-Application-Id AVP or a Vendor-Specific- 
   Application-Id AVP.  A message that MUST NOT be forwarded by Diameter 
   agents (proxies, redirects or relays) MUST not include the 
   Destination-Realm in its ABNF.  The value of the Destination-Realm 
   AVP MAY be extracted from the User-Name AVP, or other application- 
   specific methods. 
  When a message is received, the message is processed in the following 
   order: 
  1. If the message is destined for the local host, the procedures 
      listed in Section 6.1.4 are followed. 
  2. If the message is intended for a Diameter peer with whom the local 
      host is able to directly communicate, the procedures listed in 
      Section 6.1.5 are followed.  This is known as Request Forwarding. 
  3. The procedures listed in Section 6.1.6 are followed, which is 
      known as Request Routing. 
  4. If none of the above is successful, an answer is returned with the 
      Result-Code set to DIAMETER_UNABLE_TO_DELIVER, with the E-bit set. 
  For routing of Diameter messages to work within an administrative 
   domain, all Diameter nodes within the realm MUST be peers. 
  Note the processing rules contained in this section are intended to 
   be used as general guidelines to Diameter developers.  Certain 
   implementations MAY use different methods than the ones described 
   here, and still comply with the protocol specification.  See Section 
   7 for more detail on error handling. 
   
   
   
  Calhoun, et al.             Standards Track                    [Page 72] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
6.1.1.  Originating a Request 
  When creating a request, in addition to any other procedures 
   described in the application definition for that specific request, 
   the following procedures MUST be followed: 
  -  the Command-Code is set to the appropriate value 
  -  the 'R' bit is set 
  -  the End-to-End Identifier is set to a locally unique value 
  -  the Origin-Host and Origin-Realm AVPs MUST be set to the 
      appropriate values, used to identify the source of the message 
  -  the Destination-Host and Destination-Realm AVPs MUST be set to the 
      appropriate values as described in Section 6.1. 
  -  an Acct-Application-Id AVP, an Auth-Application-Id or a Vendor- 
      Specific-Application-Id AVP must be included if the request is 
      proxiable. 
  6.1.2.  Sending a Request 
  When sending a request, originated either locally, or as the result 
   of a forwarding or routing operation, the following procedures MUST 
   be followed: 
  -  the Hop-by-Hop Identifier should be set to a locally unique value 
  -  The message should be saved in the list of pending requests. 
  Other actions to perform on the message based on the particular role 
   the agent is playing are described in the following sections. 
  6.1.3.  Receiving Requests 
  A relay or proxy agent MUST check for forwarding loops when receiving 
   requests.  A loop is detected if the server finds its own identity in 
   a Route-Record AVP.  When such an event occurs, the agent MUST answer 
   with the Result-Code AVP set to DIAMETER_LOOP_DETECTED. 
  6.1.4.  Processing Local Requests 
  A request is known to be for local consumption when one of the 
   following conditions occur: 
  -  The Destination-Host AVP contains the local host's identity, 
   
  Calhoun, et al.             Standards Track                    [Page 73] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   -  The Destination-Host AVP is not present, the Destination-Realm AVP 
      contains a realm the server is configured to process locally, and 
      the Diameter application is locally supported, or 
  -  Both the Destination-Host and the Destination-Realm are not 
      present. 
  When a request is locally processed, the rules in Section 6.2 should 
   be used to generate the corresponding answer. 
  6.1.5.  Request Forwarding 
  Request forwarding is done using the Diameter Peer Table.  The 
   Diameter peer table contains all of the peers that the local node is 
   able to directly communicate with. 
  When a request is received, and the host encoded in the Destination- 
   Host AVP is one that is present in the peer table, the message SHOULD 
   be forwarded to the peer. 
  6.1.6.  Request Routing 
  Diameter request message routing is done via realms and applications. 
   A Diameter message that may be forwarded by Diameter agents (proxies, 
   redirects or relays) MUST include the target realm in the 
   Destination-Realm AVP and one of the application identification AVPs 
   Auth-Application-Id, Acct-Application-Id or Vendor-Specific- 
   Application-Id.  The realm MAY be retrieved from the User-Name AVP, 
   which is in the form of a Network Access Identifier (NAI).  The realm 
   portion of the NAI is inserted in the Destination-Realm AVP. 
  Diameter agents MAY have a list of locally supported realms and 
   applications, and MAY have a list of externally supported realms and 
   applications.  When a request is received that includes a realm 
   and/or application that is not locally supported, the message is 
   routed to the peer configured in the Realm Routing Table (see Section 
   2.7). 
  6.1.7.  Redirecting requests 
  When a redirect agent receives a request whose routing entry is set 
   to REDIRECT, it MUST reply with an answer message with the 'E' bit 
   set, while maintaining the Hop-by-Hop Identifier in the header, and 
   include the Result-Code AVP to DIAMETER_REDIRECT_INDICATION.  Each of 
   the servers associated with the routing entry are added in separate 
   Redirect-Host AVP. 
   
   
  Calhoun, et al.             Standards Track                    [Page 74] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
                  +------------------+ 
                  |     Diameter     | 
                  |  Redirect Agent  | 
                  +------------------+ 
                   ^    |    2. command + 'E' bit 
    1. Request     |    |    Result-Code = 
   joe@example.com |    |    DIAMETER_REDIRECT_INDICATION + 
                   |    |    Redirect-Host AVP(s) 
                   |    v 
               +-------------+  3. Request  +-------------+ 
               | example.com |------------->| example.net | 
               |    Relay    |              |   Diameter  | 
               |    Agent    |      +------+      ------>      +------+ 
    |      |     (Request)     |      |      (Request)    |      | 
    | NAS  +-------------------+ DRL  +-------------------+ HMS  | 
    |      |                   |      |                   |      | 
    +------+      
                                     1* [ Vendor-Id ] 
                                     0*1{ Auth-Application-Id } 
                                     0*1{ Acct-Application-Id } 
  6.12.  Redirect-Host AVP 
  One or more of instances of this AVP MUST be present if the answer 
   message's 'E' bit is set and the Result-Code AVP is set to 
   DIAMETER_REDIRECT_INDICATION. 
  Upon receiving the above, the receiving Diameter node SHOULD forward 
   the request directly to one of the hosts identified in these AVPs. 
   The server contained in the selected Redirect-Host AVP SHOULD be used 
   for all messages pertaining to this session. 
  6.13.  Redirect-Host-Usage AVP 
  The Redirect-Host-Usage AVP (AVP Code 261) is of type Enumerated. 
   This AVP MAY be present in answer messages whose 'E' bit is set and 
   the Result-Code AVP is set to DIAMETER_REDIRECT_INDICATION. 
   
   
  Calhoun, et al.             Standards Track                    [Page 80] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   When present, this AVP dictates how the routing entry resulting from 
   the Redirect-Host is to be used.  The following values are supported: 
  DONT_CACHE                        0 
      The host specified in the Redirect-Host AVP should not be cached. 
      This is the default value. 
  ALL_SESSION                       1 
      All messages within the same session, as defined by the same value 
      of the Session-ID AVP MAY be sent to the host specified in the 
      Redirect-Host AVP. 
  ALL_REALM                         2 
      All messages destined for the realm requested MAY be sent to the 
      host specified in the Redirect-Host AVP. 
  REALM_AND_APPLICATION             3 
      All messages for the application requested to the realm specified 
      MAY be sent to the host specified in the Redirect-Host AVP. 
  ALL_APPLICATION                   4 
      All messages for the application requested MAY be sent to the host 
      specified in the Redirect-Host AVP. 
  ALL_HOST                          5 
      All messages that would be sent to the host that generated the 
      Redirect-Host MAY be sent to the host specified in the Redirect- 
      Host AVP. 
  ALL_USER                          6 
      All messages for the user requested MAY be sent to the host 
      specified in the Redirect-Host AVP. 
  6.14.  Redirect-Max-Cache-Time AVP 
  The Redirect-Max-Cache-Time AVP (AVP Code 262) is of type Unsigned32. 
   This AVP MUST be present in answer messages whose 'E' bit is set, the 
   Result-Code AVP is set to DIAMETER_REDIRECT_INDICATION and the 
   Redirect-Host-Usage AVP set to a non-zero value. 
  This AVP contains the maximum number of seconds the peer and route 
   table entries, created as a result of the Redirect-Host, will be 
   cached.  Note that once a host created due to a redirect indication 
   is no longer reachable, any associated peer and routing table entries 
   MUST be deleted. 
   
   
   
Calhoun, et al.             Standards Track                    [Page 81] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
6.15.  E2E-Sequence AVP 
  The E2E-Sequence AVP (AVP Code 300) provides anti-replay protection 
   for end to end messages and is of type grouped.  It contains a random 
   value (an OctetString with a nonce) and counter (an Integer).  For 
   each end-to-end peer with which a node communicates (or remembers 
   communicating) a different nonce value MUST be used and the counter 
   is initiated at zero and increases by one each time this AVP is 
   emitted to that peer.  This AVP MUST be included in all messages 
   which use end-to-end protection (e.g., CMS signing or encryption). 
  7.  Error Handling 
  There are two different types of errors in Diameter; protocol and 
   application errors.  A protocol error is one that occurs at the base 
   protocol level, and MAY require per hop attention (e.g., message 
   routing error).  Application errors, on the other hand, generally 
   occur due to a problem with a function specified in a Diameter 
   application (e.g., user authentication, Missing AVP). 
  Result-Code AVP values that are used to report protocol errors MUST 
   only be present in answer messages whose 'E' bit is set.  When a 
   request message is received that causes a protocol error, an answer 
   message is returned with the 'E' bit set, and the Result-Code AVP is 
   set to the appropriate protocol error value.  As the answer is sent 
   back towards the originator of the request, each proxy or relay agent 
   MAY take action on the message. 
  1. Request        +---------+ Link Broken 
                +-------------------------->|Diameter |----///----+ 
                |     +---------------------|         |           v 
         +------+--+  | 2. answer + 'E' set | Relay 2 |     +--------+ 
         |Diameter ||         |           ^ 
                                            | Relay 3 |-----------+ 
                                            +---------+ 
  Figure 7:  Example of Protocol Error causing answer message 
  Figure 7 provides an example of a message forwarded upstream by a 
   Diameter relay.  When the message is received by Relay 2, and it 
   detects that it cannot forward the request to the home server, an 
   answer message is returned with the 'E' bit set and the Result-Code 
   AVP set to DIAMETER_UNABLE_TO_DELIVER.  Given that this error falls 
   
   
Calhoun, et al.             Standards Track                    [Page 82] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   within the protocol error category, Relay 1 would take special 
   action, and given the error, attempt to route the message through its 
   alternate Relay 3. 
  +---------+ 1. Request  +---------+ 2. Request  +---------+ 
         | Access  |------------>|Diameter |------------>|Diameter | 
         |         |             |         |             |  Home   | 
         | Device  | 
                 < Session-Id > 
                 { Origin-Host } 
                 { Origin-Realm } 
                 { Destination-Realm } 
                 { Destination-Host } 
                 { Auth-Application-Id } 
                 { Re-Auth-Request-Type } 
                 [ User-Name ] 
                 [ Origin-State-Id ] 
               * [ Proxy-Info ] 
               * [ Route-Record ] 
               * [ AVP ] 
  8.3.2.  Re-Auth-Answer 
  The Re-Auth-Answer (RAA), indicated by the Command-Code set to 258 
   and the message flags' 'R' bit clear, is sent in response to the RAR. 
   The Result-Code AVP MUST be present, and indicates the disposition of 
   the request. 
  A successful RAA message MUST be followed by an application-specific 
   authentication and/or authorization message. 
   
   
   
   
   
   
   
   
   
  Calhoun, et al.             Standards Track                   [Page 102] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Message Format 
    ::= < Diameter Header: 258, PXY > 
                 < Session-Id > 
                 { Result-Code } 
                 { Origin-Host } 
                 { Origin-Realm } 
                 [ User-Name ] 
                 [ Origin-State-Id ] 
                 [ Error-Message ] 
                 [ Error-Reporting-Host ] 
               * [ Failed-AVP ] 
               * [ Redirect-Host ] 
                 [ Redirect-Host-Usage ] 
                 [ Redirect-Host-Cache-Time ] 
               * [ Proxy-Info ] 
               * [ AVP ] 
  8.4.  Session Termination 
  It is necessary for a Diameter server that authorized a session, for 
   which it is maintaining state, to be notified when that session is no 
   longer active, both for tracking purposes as well as to allow 
   stateful agents to release any resources that they may have provided 
   for the user's session.  For sessions whose state is not being 
   maintained, this section is not used. 
  When a user session that required Diameter authorization terminates, 
   the access device that provided the service MUST issue a Session- 
   Termination-Request (STR) message to the Diameter server that 
   authorized the service, to notify it that the session is no longer 
   active.  An STR MUST be issued when a user session terminates for any 
   reason, including user logoff, expiration of Session-Timeout, 
   administrative action, termination upon receipt of an Abort-Session- 
   Request (see below), orderly shutdown of the access device, etc. 
  The access device also MUST issue an STR for a session that was 
   authorized but never actually started.  This could occur, for 
   example, due to a sudden resource shortage in the access device, or 
   because the access device is unwilling to provide the type of service 
   requested in the authorization, or because the access device does not 
   support a mandatory AVP returned in the authorization, etc. 
  It is also possible that a session that was authorized is never 
   actually started due to action of a proxy.  For example, a proxy may 
   modify an authorization answer, converting the result from success to 
   failure, prior to forwarding the message to the access device.  If 
   the answer did not contain an Auth-Session-State AVP with the value 
   
  Calhoun, et al.             Standards Track                   [Page 103] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   NO_STATE_MAINTAINED, a proxy that causes an authorized session not to 
   be started MUST issue an STR to the Diameter server that authorized 
   the session, since the access device has no way of knowing that the 
   session had been authorized. 
  A Diameter server that receives an STR message MUST clean up 
   resources (e.g., session state) associated with the Session-Id 
   specified in the STR, and return a Session-Termination-Answer. 
  A Diameter server also MUST clean up resources when the Session- 
   Timeout expires, or when the Authorization-Lifetime and the Auth- 
   Grace-Period AVPs expires without receipt of a re-authorization 
   request, regardless of whether an STR for that session is received. 
   The access device is not expected to provide service beyond the 
   expiration of these timers; thus, expiration of either of these 
   timers implies that the access device may have unexpectedly shut 
   down. 
  8.4.1.  Session-Termination-Request 
  The Session-Termination-Request (STR), indicated by the Command-Code 
   set to 275 and the Command Flags' 'R' bit set, is sent by the access 
   device to inform the Diameter Server that an authenticated and/or 
   authorized session is being terminated. 
  Message Format 
   ::= < Diameter Header: 275, REQ, PXY > 
                < Session-Id > 
                { Origin-Host } 
                { Origin-Realm } 
                { Destination-Realm } 
                { Auth-Application-Id } 
                { Termination-Cause } 
                [ User-Name ] 
                [ Destination-Host ] 
              * [ Class ] 
                [ Origin-State-Id ] 
              * [ Proxy-Info ] 
              * [ Route-Record ] 
              * [ AVP ] 
   
   
   
   
   
Calhoun, et al.             Standards Track                   [Page 104] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
8.4.2.  Session-Termination-Answer 
  The Session-Termination-Answer (STA), indicated by the Command-Code 
   set to 275 and the message flags' 'R' bit clear, is sent by the 
   Diameter Server to acknowledge the notification that the session has 
   been terminated.  The Result-Code AVP MUST be present, and MAY 
   contain an indication that an error occurred while servicing the STR. 
  Upon sending or receipt of the STA, the Diameter Server MUST release 
   all resources for the session indicated by the Session-Id AVP.  Any 
   intermediate server in the Proxy-Chain MAY also release any 
   resources, if necessary. 
  Message Format 
    ::= < Diameter Header: 275, PXY > 
                 < Session-Id > 
                 { Result-Code } 
                 { Origin-Host } 
                 { Origin-Realm } 
                 [ User-Name ] 
               * [ Class ] 
                 [ Error-Message ] 
                 [ Error-Reporting-Host ] 
               * [ Failed-AVP ] 
                 [ Origin-State-Id ] 
               * [ Redirect-Host ] 
                 [ Redirect-Host-Usage ] 
                                    ^ 
                 [ Redirect-Max-Cache-Time ] 
               * [ Proxy-Info ] 
               * [ AVP ] 
  8.5.  Aborting a Session 
  A Diameter server may request that the access device stop providing 
   service for a particular session by issuing an Abort-Session-Request 
   (ASR). 
  For example, the Diameter server that originally authorized the 
   session may be required to cause that session to be stopped for 
   credit or other reasons that were not anticipated when the session 
   was first authorized.  On the other hand, an operator may maintain a 
   management server for the purpose of issuing ASRs to administratively 
   remove users from the network. 
  An access device that receives an ASR with Session-ID equal to a 
   currently active session MAY stop the session.  Whether the access 
   
  Calhoun, et al.             Standards Track                   [Page 105] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   device stops the session or not is implementation- and/or 
   configuration-dependent.  For example, an access device may honor 
   ASRs from certain agents only.  In any case, the access device MUST 
   respond with an Abort-Session-Answer, including a Result-Code AVP to 
   indicate what action it took. 
  Note that if the access device does stop the session upon receipt of 
   an ASR, it issues an STR to the authorizing server (which may or may 
   not be the agent issuing the ASR) just as it would if the session 
   were terminated for any other reason. 
  8.5.1.  Abort-Session-Request 
  The Abort-Session-Request (ASR), indicated by the Command-Code set to 
   274 and the message flags' 'R' bit set, may be sent by any server to 
   the access device that is providing session service, to request that 
   the session identified by the Session-Id be stopped. 
  Message Format 
    ::= < Diameter Header: 274, REQ, PXY > 
                 < Session-Id > 
                 { Origin-Host } 
                 { Origin-Realm } 
                 { Destination-Realm } 
                 { Destination-Host } 
                 { Auth-Application-Id } 
                 [ User-Name ] 
                 [ Origin-State-Id ] 
               * [ Proxy-Info ] 
               * [ Route-Record ] 
               * [ AVP ] 
  8.5.2.  Abort-Session-Answer 
  The Abort-Session-Answer (ASA), indicated by the Command-Code set to 
   274 and the message flags' 'R' bit clear, is sent in response to the 
   ASR.  The Result-Code AVP MUST be present, and indicates the 
   disposition of the request. 
  If the session identified by Session-Id in the ASR was successfully 
   terminated, Result-Code is set to DIAMETER_SUCCESS.  If the session 
   is not currently active, Result-Code is set to 
   DIAMETER_UNKNOWN_SESSION_ID.  If the access device does not stop the 
   session for any other reason, Result-Code is set to 
   DIAMETER_UNABLE_TO_COMPLY. 
   
   
  Calhoun, et al.             Standards Track                   [Page 106] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Message Format 
    ::= < Diameter Header: 274, PXY > 
                 < Session-Id > 
                 { Result-Code } 
                 { Origin-Host } 
                 { Origin-Realm } 
                 [ User-Name ] 
                 [ Origin-State-Id ] 
                 [ Error-Message ] 
                 [ Error-Reporting-Host ] 
               * [ Failed-AVP ] 
               * [ Redirect-Host ] 
                 [ Redirect-Host-Usage ] 
                 [ Redirect-Max-Cache-Time ] 
               * [ Proxy-Info ] 
               * [ AVP ] 
  8.6.  Inferring Session Termination from Origin-State-Id 
  Origin-State-Id is used to allow rapid detection of terminated 
   sessions for which no STR would have been issued, due to 
   unanticipated shutdown of an access device. 
  By including Origin-State-Id in CER/CEA messages, an access device 
   allows a next-hop server to determine immediately upon connection 
   whether the device has lost its sessions since the last connection. 
  By including Origin-State-Id in request messages, an access device 
   also allows a server with which it communicates via proxy to make 
   such a determination.  However, a server that is not directly 
   connected with the access device will not discover that the access 
   device has been restarted unless and until it receives a new request 
   from the access device.  Thus, use of this mechanism across proxies 
   is opportunistic rather than reliable, but useful nonetheless. 
  When a Diameter server receives an Origin-State-Id that is greater 
   than the Origin-State-Id previously received from the same issuer, it 
   may assume that the issuer has lost state since the previous message 
   and that all sessions that were active under the lower Origin-State- 
   Id have been terminated.  The Diameter server MAY clean up all 
   session state associated with such lost sessions, and MAY also issues 
   STRs for all such lost sessions that were authorized on upstream 
   servers, to allow session state to be cleaned up globally. 
   
   
   
  Calhoun, et al.             Standards Track                   [Page 107] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
8.7.  Auth-Request-Type AVP 
  The Auth-Request-Type AVP (AVP Code 274) is of type Enumerated and is 
   included in application-specific auth requests to inform the peers 
   whether a user is to be authenticated only, authorized only or both. 
   Note any value other than both MAY cause RADIUS interoperability 
   issues.  The following values are defined: 
  AUTHENTICATE_ONLY          1 
      The request being sent is for authentication only, and MUST 
      contain the relevant application specific authentication AVPs that 
      are needed by the Diameter server to authenticate the user. 
  AUTHORIZE_ONLY             2 
      The request being sent is for authorization only, and MUST contain 
      the application specific authorization AVPs that are necessary to 
      identify the service being requested/offered. 
  AUTHORIZE_AUTHENTICATE     3 
      The request contains a request for both authentication and 
      authorization.  The request MUST include both the relevant 
      application specific authentication information, and authorization 
      information necessary to identify the service being 
      requested/offered. 
  8.8.  Session-Id AVP 
  The Session-Id AVP (AVP Code 263) is of type UTF8String and is used 
   to identify a specific session (see Section 8).  All messages 
   pertaining to a specific session MUST include only one Session-Id AVP 
   and the same value MUST be used throughout the life of a session. 
   When present, the Session-Id SHOULD appear immediately following the 
   Diameter Header (see Section 3). 
  The Session-Id MUST be globally and eternally unique, as it is meant 
   to uniquely identify a user session without reference to any other 
   information, and may be needed to correlate historical authentication 
   information with accounting information.  The Session-Id includes a 
   mandatory portion and an implementation-defined portion; a 
   recommended format for the implementation-defined portion is outlined 
   below. 
  The Session-Id MUST begin with the sender's identity encoded in the 
   DiameterIdentity type (see Section 4.4).  The remainder of the 
   Session-Id is delimited by a ";" character, and MAY be any sequence 
   that the client can guarantee to be eternally unique; however, the 
   following format is recommended, (square brackets [] indicate an 
   optional element): 
   
  Calhoun, et al.             Standards Track                   [Page 108] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   ;;[;] 
   and  are decimal representations of the 
   high and low 32 bits of a monotonically increasing 64-bit value.  The 
   64-bit value is rendered in two part to simplify formatting by 32-bit 
   processors.  At startup, the high 32 bits of the 64-bit value MAY be 
   initialized to the time, and the low 32 bits MAY be initialized to 
   zero.  This will for practical purposes eliminate the possibility of 
   overlapping Session-Ids after a reboot, assuming the reboot process 
   takes longer than a second.  Alternatively, an implementation MAY 
   keep track of the increasing value in non-volatile memory. 
   is implementation specific but may include a modem's 
   device Id, a layer 2 address, timestamp, etc. 
  Example, in which there is no optional value: 
      accesspoint7.acme.com;1876543210;523 
  Example, in which there is an optional value: 
      accesspoint7.acme.com;1876543210;523;mobile@200.1.1.88 
  The Session-Id is created by the Diameter application initiating the 
   session, which in most cases is done by the client.  Note that a 
   Session-Id MAY be used for both the authorization and accounting 
   commands of a given application. 
  8.9.  Authorization-Lifetime AVP 
  The Authorization-Lifetime AVP (AVP Code 291) is of type Unsigned32 
   and contains the maximum number of seconds of service to be provided 
   to the user before the user is to be re-authenticated and/or re- 
   authorized.  Great care should be taken when the Authorization- 
   Lifetime value is determined, since a low, non-zero, value could 
   create significant Diameter traffic, which could congest both the 
   network and the agents. 
  A value of zero (0) means that immediate re-auth is necessary by the 
   access device.  This is typically used in cases where multiple 
   authentication methods are used, and a successful auth response with 
   this AVP set to zero is used to signal that the next authentication 
   method is to be immediately initiated.  The absence of this AVP, or a 
   value of all ones (meaning all bits in the 32 bit field are set to 
   one) means no re-auth is expected. 
  If both this AVP and the Session-Timeout AVP are present in a 
   message, the value of the latter MUST NOT be smaller than the 
   Authorization-Lifetime AVP. 
   
   
Calhoun, et al.             Standards Track                   [Page 109] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   An Authorization-Lifetime AVP MAY be present in re-authorization 
   messages, and contains the number of seconds the user is authorized 
   to receive service from the time the re-auth answer message is 
   received by the access device. 
  This AVP MAY be provided by the client as a hint of the maximum 
   lifetime that it is willing to accept.  However, the server MAY 
   return a value that is equal to, or smaller, than the one provided by 
   the client. 
  8.10.  Auth-Grace-Period AVP 
  The Auth-Grace-Period AVP (AVP Code 276) is of type Unsigned32 and 
   contains the number of seconds the Diameter server will wait 
   following the expiration of the Authorization-Lifetime AVP before 
   cleaning up resources for the session. 
  8.11.  Auth-Session-State AVP 
  The Auth-Session-State AVP (AVP Code 277) is of type Enumerated and 
   specifies whether state is maintained for a particular session.  The 
   client MAY include this AVP in requests as a hint to the server, but 
   the value in the server's answer message is binding.  The following 
   values are supported: 
  STATE_MAINTAINED              0 
      This value is used to specify that session state is being 
      maintained, and the access device MUST issue a session termination 
      message when service to the user is terminated.  This is the 
      default value. 
  NO_STATE_MAINTAINED           1 
      This value is used to specify that no session termination messages 
      will be sent by the access device upon expiration of the 
      Authorization-Lifetime. 
  8.12.  Re-Auth-Request-Type AVP 
  The Re-Auth-Request-Type AVP (AVP Code 285) is of type Enumerated and 
   is included in application-specific auth answers to inform the client 
   of the action expected upon expiration of the Authorization-Lifetime. 
   If the answer message contains an Authorization-Lifetime AVP with a 
   positive value, the Re-Auth-Request-Type AVP MUST be present in an 
   answer message.  The following values are defined: 
   
   
   
  Calhoun, et al.             Standards Track                   [Page 110] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   AUTHORIZE_ONLY             0 
      An authorization only re-auth is expected upon expiration of the 
      Authorization-Lifetime.  This is the default value if the AVP is 
      not present in answer messages that include the Authorization- 
      Lifetime. 
  AUTHORIZE_AUTHENTICATE     1 
      An authentication and authorization re-auth is expected upon 
      expiration of the Authorization-Lifetime. 
  8.13.  Session-Timeout AVP 
  The Session-Timeout AVP (AVP Code 27) [RADIUS] is of type Unsigned32 
   and contains the maximum number of seconds of service to be provided 
   to the user before termination of the session.  When both the 
   Session-Timeout and the Authorization-Lifetime AVPs are present in an 
   answer message, the former MUST be equal to or greater than the value 
   of the latter. 
  A session that terminates on an access device due to the expiration 
   of the Session-Timeout MUST cause an STR to be issued, unless both 
   the access device and the home server had previously agreed that no 
   session termination messages would be sent (see Section 8.9). 
  A Session-Timeout AVP MAY be present in a re-authorization answer 
   message, and contains the remaining number of seconds from the 
   beginning of the re-auth. 
  A value of zero, or the absence of this AVP, means that this session 
   has an unlimited number of seconds before termination. 
  This AVP MAY be provided by the client as a hint of the maximum 
   timeout that it is willing to accept.  However, the server MAY return 
   a value that is equal to, or smaller, than the one provided by the 
   client. 
  8.14.  User-Name AVP 
  The User-Name AVP (AVP Code 1) [RADIUS] is of type UTF8String, which 
   contains the User-Name, in a format consistent with the NAI 
   specification [NAI]. 
  8.15.  Termination-Cause AVP 
  The Termination-Cause AVP (AVP Code 295) is of type Enumerated, and 
   is used to indicate the reason why a session was terminated on the 
   access device.  The following values are defined: 
   
   
Calhoun, et al.             Standards Track                   [Page 111] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   DIAMETER_LOGOUT                   1 
      The user initiated a disconnect 
  DIAMETER_SERVICE_NOT_PROVIDED     2 
      This value is used when the user disconnected prior to the receipt 
      of the authorization answer message. 
  DIAMETER_BAD_ANSWER               3 
      This value indicates that the authorization answer received by the 
      access device was not processed successfully. 
  DIAMETER_ADMINISTRATIVE           4 
      The user was not granted access, or was disconnected, due to 
      administrative reasons, such as the receipt of a Abort-Session- 
      Request message. 
  DIAMETER_LINK_BROKEN              5 
      The communication to the user was abruptly disconnected. 
  DIAMETER_AUTH_EXPIRED             6 
      The user's access was terminated since its authorized session time 
      has expired. 
  DIAMETER_USER_MOVED               7 
      The user is receiving services from another access device. 
  DIAMETER_SESSION_TIMEOUT          8 
      The user's session has timed out, and service has been terminated. 
  8.16.  Origin-State-Id AVP 
  The Origin-State-Id AVP (AVP Code 278), of type Unsigned32, is a 
   monotonically increasing value that is advanced whenever a Diameter 
   entity restarts with loss of previous state, for example upon reboot. 
   Origin-State-Id MAY be included in any Diameter message, including 
   CER. 
  A Diameter entity issuing this AVP MUST create a higher value for 
   this AVP each time its state is reset.  A Diameter entity MAY set 
   Origin-State-Id to the time of startup, or it MAY use an incrementing 
   counter retained in non-volatile memory across restarts. 
  The Origin-State-Id, if present, MUST reflect the state of the entity 
   indicated by Origin-Host.  If a proxy modifies Origin-Host, it MUST 
   either remove Origin-State-Id or modify it appropriately as well. 
   
   
   
Calhoun, et al.             Standards Track                   [Page 112] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Typically, Origin-State-Id is used by an access device that always 
   starts up with no active sessions; that is, any session active prior 
   to restart will have been lost.  By including Origin-State-Id in a 
   message, it allows other Diameter entities to infer that sessions 
   associated with a lower Origin-State-Id are no longer active.  If an 
   access device does not intend for such inferences to be made, it MUST 
   either not include Origin-State-Id in any message, or set its value 
   to 0. 
  8.17.  Session-Binding AVP 
  The Session-Binding AVP (AVP Code 270) is of type Unsigned32, and MAY 
   be present in application-specific authorization answer messages.  If 
   present, this AVP MAY inform the Diameter client that all future 
   application-specific re-auth messages for this session MUST be sent 
   to the same authorization server.  This AVP MAY also specify that a 
   Session-Termination-Request message for this session MUST be sent to 
   the same authorizing server. 
  This field is a bit mask, and the following bits have been defined: 
  RE_AUTH                    1 
      When set, future re-auth messages for this session MUST NOT 
      include the Destination-Host AVP.  When cleared, the default 
      value, the Destination-Host AVP MUST be present in all re-auth 
      messages for this session. 
  STR                        2 
      When set, the STR message for this session MUST NOT include the 
      Destination-Host AVP.  When cleared, the default value, the 
      Destination-Host AVP MUST be present in the STR message for this 
      session. 
  ACCOUNTING                 4 
      When set, all accounting messages for this session MUST NOT 
      include the Destination-Host AVP.  When cleared, the default 
      value, the Destination-Host AVP, if known, MUST be present in all 
      accounting messages for this session. 
  8.18.  Session-Server-Failover AVP 
  The Session-Server-Failover AVP (AVP Code 271) is of type Enumerated, 
   and MAY be present in application-specific authorization answer 
   messages that either do not include the Session-Binding AVP or 
   include the Session-Binding AVP with any of the bits set to a zero 
   value.  If present, this AVP MAY inform the Diameter client that if a 
   
   
  Calhoun, et al.             Standards Track                   [Page 113] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   re-auth or STR message fails due to a delivery problem, the Diameter 
   client SHOULD issue a subsequent message without the Destination-Host 
   AVP.  When absent, the default value is REFUSE_SERVICE. 
  The following values are supported: 
  REFUSE_SERVICE             0 
      If either the re-auth or the STR message delivery fails, terminate 
      service with the user, and do not attempt any subsequent attempts. 
  TRY_AGAIN                  1 
      If either the re-auth or the STR message delivery fails, resend 
      the failed message without the Destination-Host AVP present. 
  ALLOW_SERVICE              2 
      If re-auth message delivery fails, assume that re-authorization 
      succeeded.  If STR message delivery fails, terminate the session. 
  TRY_AGAIN_ALLOW_SERVICE    3 
      If either the re-auth or the STR message delivery fails, resend 
      the failed message without the Destination-Host AVP present.  If 
      the second delivery fails for re-auth, assume re-authorization 
      succeeded.  If the second delivery fails for STR, terminate the 
      session. 
  8.19.  Multi-Round-Time-Out AVP 
  The Multi-Round-Time-Out AVP (AVP Code 272) is of type Unsigned32, 
   and SHOULD be present in application-specific authorization answer 
   messages whose Result-Code AVP is set to DIAMETER_MULTI_ROUND_AUTH. 
   This AVP contains the maximum number of seconds that the access 
   device MUST provide the user in responding to an authentication 
   request. 
  8.20.  Class AVP 
  The Class AVP (AVP Code 25) is of type OctetString and is used to by 
   Diameter servers to return state information to the access device. 
   When one or more Class AVPs are present in application-specific 
   authorization answer messages, they MUST be present in subsequent 
   re-authorization, session termination and accounting messages.  Class 
   AVPs found in a re-authorization answer message override the ones 
   found in any previous authorization answer message.  Diameter server 
   implementations SHOULD NOT return Class AVPs that require more than 
   4096 bytes of storage on the Diameter client.  A Diameter client that 
   receives Class AVPs whose size exceeds local available storage MUST 
   terminate the session. 
   
   
Calhoun, et al.             Standards Track                   [Page 114] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
8.21.  Event-Timestamp AVP 
  The Event-Timestamp (AVP Code 55) is of type Time, and MAY be 
   included in an Accounting-Request and Accounting-Answer messages to 
   record the time that the reported event occurred, in seconds since 
   January 1, 1900 00:00 UTC. 
  9.  Accounting 
  This accounting protocol is based on a server directed model with 
   capabilities for real-time delivery of accounting information. 
   Several fault resilience methods [ACCMGMT] have been built in to the 
   protocol in order minimize loss of accounting data in various fault 
   situations and under different assumptions about the capabilities of 
   the used devices. 
  9.1.  Server Directed Model 
  The server directed model means that the device generating the 
   accounting data gets information from either the authorization server 
   (if contacted) or the accounting server regarding the way accounting 
   data shall be forwarded.  This information includes accounting record 
   timeliness requirements. 
  As discussed in [ACCMGMT], real-time transfer of accounting records 
   is a requirement, such as the need to perform credit limit checks and 
   fraud detection.  Note that batch accounting is not a requirement, 
   and is therefore not supported by Diameter.  Should batched 
   accounting be required in the future, a new Diameter application will 
   need to be created, or it could be handled using another protocol. 
   Note, however, that even if at the Diameter layer accounting requests 
   are processed one by one, transport protocols used under Diameter 
   typically batch several requests in the same packet under heavy 
   traffic conditions.  This may be sufficient for many applications. 
  The authorization server (chain) directs the selection of proper 
   transfer strategy, based on its knowledge of the user and 
   relationships of roaming partnerships.  The server (or agents) uses 
   the Acct-Interim-Interval and Accounting-Realtime-Required AVPs to 
   control the operation of the Diameter peer operating as a client. 
   The Acct-Interim-Interval AVP, when present, instructs the Diameter 
   node acting as a client to produce accounting records continuously 
   even during a session.  Accounting-Realtime-Required AVP is used to 
   control the behavior of the client when the transfer of accounting 
   records from the Diameter client is delayed or unsuccessful. 
   
   
   
Calhoun, et al.             Standards Track                   [Page 115] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   The Diameter accounting server MAY override the interim interval or 
   the realtime requirements by including the Acct-Interim-Interval or 
   Accounting-Realtime-Required AVP in the Accounting-Answer message. 
   When one of these AVPs is present, the latest value received SHOULD 
   be used in further accounting activities for the same session. 
  9.2.  Protocol Messages 
  A Diameter node that receives a successful authentication and/or 
   authorization messages from the Home AAA server MUST collect 
   accounting information for the session.  The Accounting-Request 
   message is used to transmit the accounting information to the Home 
   AAA server, which MUST reply with the Accounting-Answer message to 
   confirm reception.  The Accounting-Answer message includes the 
   Result-Code AVP, which MAY indicate that an error was present in the 
   accounting message.  A rejected Accounting-Request message MAY cause 
   the user's session to be terminated, depending on the value of the 
   Accounting-Realtime-Required AVP received earlier for the session in 
   question. 
  Each Diameter Accounting protocol message MAY be compressed, in order 
   to reduce network bandwidth usage.  If IPsec and IKE are used to 
   secure the Diameter session, then IP compression [IPComp] MAY be used 
   and IKE [IKE] MAY be used to negotiate the compression parameters. 
   If TLS is used to secure the Diameter session, then TLS compression 
   [TLS] MAY be used. 
  9.3.  Application document requirements 
  Each Diameter application (e.g., NASREQ, MobileIP), MUST define their 
   Service-Specific AVPs that MUST be present in the Accounting-Request 
   message in a section entitled "Accounting AVPs".  The application 
   MUST assume that the AVPs described in this document will be present 
   in all Accounting messages, so only their respective service-specific 
   AVPs need to be defined in this section. 
  9.4.  Fault Resilience 
  Diameter Base protocol mechanisms are used to overcome small message 
   loss and network faults of temporary nature. 
  Diameter peers acting as clients MUST implement the use of failover 
   to guard against server failures and certain network failures. 
   Diameter peers acting as agents or related off-line processing 
   systems MUST detect duplicate accounting records caused by the 
   sending of same record to several servers and duplication of messages 
   
   
  Calhoun, et al.             Standards Track                   [Page 116] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   in transit.  This detection MUST be based on the inspection of the 
   Session-Id and Accounting-Record-Number AVP pairs.  Appendix C 
   discusses duplicate detection needs and implementation issues. 
  Diameter clients MAY have non-volatile memory for the safe storage of 
   accounting records over reboots or extended network failures, network 
   partitions, and server failures.  If such memory is available, the 
   client SHOULD store new accounting records there as soon as the 
   records are created and until a positive acknowledgement of their 
   reception from the Diameter Server has been received.  Upon a reboot, 
   the client MUST starting sending the records in the non-volatile 
   memory to the accounting server with appropriate modifications in 
   termination cause, session length, and other relevant information in 
   the records. 
  A further application of this protocol may include AVPs to control 
   how many accounting records may at most be stored in the Diameter 
   client without committing them to the non-volatile memory or 
   transferring them to the Diameter server. 
  The client SHOULD NOT remove the accounting data from any of its 
   memory areas before the correct Accounting-Answer has been received. 
   The client MAY remove oldest, undelivered or yet unacknowledged 
   accounting data if it runs out of resources such as memory.  It is an 
   implementation dependent matter for the client to accept new sessions 
   under this condition. 
  9.5.  Accounting Records 
  In all accounting records, the Session-Id AVP MUST be present; the 
   User-Name AVP MUST be present if it is available to the Diameter 
   client.  If strong authentication across agents is required, end-to- 
   end security may be used for authentication purposes. 
  Different types of accounting records are sent depending on the 
   actual type of accounted service and the authorization server's 
   directions for interim accounting.  If the accounted service is a 
   one-time event, meaning that the start and stop of the event are 
   simultaneous, then the Accounting-Record-Type AVP MUST be present and 
   set to the value EVENT_RECORD. 
  If the accounted service is of a measurable length, then the AVP MUST 
   use the values START_RECORD, STOP_RECORD, and possibly, 
   INTERIM_RECORD.  If the authorization server has not directed interim 
   accounting to be enabled for the session, two accounting records MUST 
   be generated for each service of type session.  When the initial 
   
   
  Calhoun, et al.             Standards Track                   [Page 117] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Accounting-Request for a given session is sent, the Accounting- 
   Record-Type AVP MUST be set to the value START_RECORD.  When the last 
   Accounting-Request is sent, the value MUST be STOP_RECORD. 
  If the authorization server has directed interim accounting to be 
   enabled, the Diameter client MUST produce additional records between 
   the START_RECORD and STOP_RECORD, marked INTERIM_RECORD.  The 
   production of these records is directed by Acct-Interim-Interval as 
   well as any re-authentication or re-authorization of the session. The 
   Diameter client MUST overwrite any previous interim accounting 
   records that are locally stored for delivery, if a new record is 
   being generated for the same session.  This ensures that only one 
   pending interim record can exist on an access device for any given 
   session. 
  A particular value of Accounting-Sub-Session-Id MUST appear only in 
   one sequence of accounting records from a DIAMETER client, except for 
   the purposes of retransmission.  The one sequence that is sent MUST 
   be either one record with Accounting-Record-Type AVP set to the value 
   EVENT_RECORD, or several records starting with one having the value 
   START_RECORD, followed by zero or more INTERIM_RECORD and a single 
   STOP_RECORD.  A particular Diameter application specification MUST 
   define the type of sequences that MUST be used. 
  9.6.  Correlation of Accounting Records 
  The Diameter protocol's Session-Id AVP, which is globally unique (see 
   Section 8.8), is used during the authorization phase to identify a 
   particular session.  Services that do not require any authorization 
   still use the Session-Id AVP to identify sessions.  Accounting 
   messages MAY use a different Session-Id from that sent in 
   authorization messages.  Specific applications MAY require different 
   a Session-ID for accounting messages. 
  However, there are certain applications that require multiple 
   accounting sub-sessions.  Such applications would send messages with 
   a constant Session-Id AVP, but a different Accounting-Sub-Session-Id 
   AVP.  In these cases, correlation is performed using the Session-Id. 
   It is important to note that receiving a STOP_RECORD with no 
   Accounting-Sub-Session-Id AVP when sub-sessions were originally used 
   in the START_RECORD messages implies that all sub-sessions are 
   terminated. 
  Furthermore, there are certain applications where a user receives 
   service from different access devices (e.g., Mobile IPv4), each with 
   their own unique Session-Id.  In such cases, the Acct-Multi-Session- 
   Id AVP is used for correlation.  During authorization, a server that 
   
   
Calhoun, et al.             Standards Track                   [Page 118] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   determines that a request is for an existing session SHOULD include 
   the Acct-Multi-Session-Id AVP, which the access device MUST include 
   in all subsequent accounting messages. 
  The Acct-Multi-Session-Id AVP MAY include the value of the original 
   Session-Id.  It's contents are implementation specific, but MUST be 
   globally unique across other Acct-Multi-Session-Id, and MUST NOT 
   change during the life of a session. 
  A Diameter application document MUST define the exact concept of a 
   session that is being accounted, and MAY define the concept of a 
   multi-session.  For instance, the NASREQ DIAMETER application treats 
   a single PPP connection to a Network Access Server as one session, 
   and a set of Multilink PPP sessions as one multi-session. 
  9.7.  Accounting Command-Codes 
  This section defines Command-Code values that MUST be supported by 
   all Diameter implementations that provide Accounting services. 
  9.7.1.  Accounting-Request 
  The Accounting-Request (ACR) command, indicated by the Command-Code 
   field set to 271 and the Command Flags' 'R' bit set, is sent by a 
   Diameter node, acting as a client, in order to exchange accounting 
   information with a peer. 
  One of Acct-Application-Id and Vendor-Specific-Application-Id AVPs 
   MUST be present.  If the Vendor-Specific-Application-Id grouped AVP 
   is present, it must have an Acct-Application-Id inside. 
  The AVP listed below SHOULD include service specific accounting AVPs, 
   as described in Section 9.3. 
   
   
   
   
   
   
   
   
   
Calhoun, et al.             Standards Track                   [Page 119] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Message Format 
   ::= < Diameter Header: 271, REQ, PXY > 
                < Session-Id > 
                { Origin-Host } 
                { Origin-Realm } 
                { Destination-Realm } 
                { Accounting-Record-Type } 
                { Accounting-Record-Number } 
                [ Acct-Application-Id ] 
                [ Vendor-Specific-Application-Id ] 
                [ User-Name ] 
                [ Accounting-Sub-Session-Id ] 
                [ Acct-Session-Id ] 
                [ Acct-Multi-Session-Id ] 
                [ Acct-Interim-Interval ] 
                [ Accounting-Realtime-Required ] 
                [ Origin-State-Id ] 
                [ Event-Timestamp ] 
              * [ Proxy-Info ] 
              * [ Route-Record ] 
              * [ AVP ] 
  9.7.2.  Accounting-Answer 
  The Accounting-Answer (ACA) command, indicated by the Command-Code 
   field set to 271 and the Command Flags' 'R' bit cleared, is used to 
   acknowledge an Accounting-Request command.  The Accounting-Answer 
   command contains the same Session-Id and includes the usage AVPs only 
   if CMS is in use when sending this command.  Note that the inclusion 
   of the usage AVPs when CMS is not being used leads to unnecessarily 
   large answer messages, and can not be used as a server's proof of the 
   receipt of these AVPs in an end-to-end fashion.  If the Accounting- 
   Request was protected by end-to-end security, then the corresponding 
   ACA message MUST be protected by end-to-end security. 
  Only the target Diameter Server, known as the home Diameter Server, 
   SHOULD respond with the Accounting-Answer command. 
  One of Acct-Application-Id and Vendor-Specific-Application-Id AVPs 
   MUST be present.  If the Vendor-Specific-Application-Id grouped AVP 
   is present, it must have an Acct-Application-Id inside. 
  The AVP listed below SHOULD include service specific accounting AVPs, 
   as described in Section 9.3. 
   
   
   
Calhoun, et al.             Standards Track                   [Page 120] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Message Format 
   ::= < Diameter Header: 271, PXY > 
                < Session-Id > 
                { Result-Code } 
                { Origin-Host } 
                { Origin-Realm } 
                { Accounting-Record-Type } 
                { Accounting-Record-Number } 
                [ Acct-Application-Id ] 
                [ Vendor-Specific-Application-Id ] 
                [ User-Name ] 
                [ Accounting-Sub-Session-Id ] 
                [ Acct-Session-Id ] 
                [ Acct-Multi-Session-Id ] 
                [ Error-Reporting-Host ] 
                [ Acct-Interim-Interval ] 
                [ Accounting-Realtime-Required ] 
                [ Origin-State-Id ] 
                [ Event-Timestamp ] 
              * [ Proxy-Info ] 
              * [ AVP ] 
  9.8.  Accounting AVPs 
  This section contains AVPs that describe accounting usage information 
   related to a specific session. 
  9.8.1.  Accounting-Record-Type AVP 
  The Accounting-Record-Type AVP (AVP Code 480) is of type Enumerated 
   and contains the type of accounting record being sent.  The following 
   values are currently defined for the Accounting-Record-Type AVP: 
  EVENT_RECORD                    1 
      An Accounting Event Record is used to indicate that a one-time 
      event has occurred (meaning that the start and end of the event 
      are simultaneous).  This record contains all information relevant 
      to the service, and is the only record of the service. 
  START_RECORD                    2 
      An Accounting Start, Interim, and Stop Records are used to 
      indicate that a service of a measurable length has been given.  An 
      Accounting Start Record is used to initiate an accounting session, 
      and contains accounting information that is relevant to the 
      initiation of the session. 
   
   
  Calhoun, et al.             Standards Track                   [Page 121] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   INTERIM_RECORD                  3 
      An Interim Accounting Record contains cumulative accounting 
      information for an existing accounting session.  Interim 
      Accounting Records SHOULD be sent every time a re-authentication 
      or re-authorization occurs.  Further, additional interim record 
      triggers MAY be defined by application-specific Diameter 
      applications.  The selection of whether to use INTERIM_RECORD 
      records is done by the Acct-Interim-Interval AVP. 
  STOP_RECORD                     4 
      An Accounting Stop Record is sent to terminate an accounting 
      session and contains cumulative accounting information relevant to 
      the existing session. 
  9.8.2.  Acct-Interim-Interval 
  The Acct-Interim-Interval AVP (AVP Code 85) is of type Unsigned32 and 
   is sent from the Diameter home authorization server to the Diameter 
   client.  The client uses information in this AVP to decide how and 
   when to produce accounting records.  With different values in this 
   AVP, service sessions can result in one, two, or two+N accounting 
   records, based on the needs of the home-organization.  The following 
   accounting record production behavior is directed by the inclusion of 
   this AVP: 
  1. The omission of the Acct-Interim-Interval AVP or its inclusion 
      with Value field set to 0 means that EVENT_RECORD, START_RECORD, 
      and STOP_RECORD are produced, as appropriate for the service. 
  2. The inclusion of the AVP with Value field set to a non-zero value 
      means that INTERIM_RECORD records MUST be produced between the 
      START_RECORD and STOP_RECORD records.  The Value field of this AVP 
      is the nominal interval between these records in seconds.  The 
      Diameter node that originates the accounting information, known as 
      the client, MUST produce the first INTERIM_RECORD record roughly 
      at the time when this nominal interval has elapsed from the 
      START_RECORD, the next one again as the interval has elapsed once 
      more, and so on until the session ends and a STOP_RECORD record is 
      produced. 
  The client MUST ensure that the interim record production times 
      are randomized so that large accounting message storms are not 
      created either among records or around a common service start 
      time. 
   
   
   
  Calhoun, et al.             Standards Track                   [Page 122] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
9.8.3.  Accounting-Record-Number AVP 
  The Accounting-Record-Number AVP (AVP Code 485) is of type Unsigned32 
   and identifies this record within one session.  As Session-Id AVPs 
   are globally unique, the combination of Session-Id and Accounting- 
   Record-Number AVPs is also globally unique, and can be used in 
   matching accounting records with confirmations.  An easy way to 
   produce unique numbers is to set the value to 0 for records of type 
   EVENT_RECORD and START_RECORD, and set the value to 1 for the first 
   INTERIM_RECORD, 2 for the second, and so on until the value for 
   STOP_RECORD is one more than for the last INTERIM_RECORD. 
  9.8.4.  Acct-Session-Id AVP 
  The Acct-Session-Id AVP (AVP Code 44) is of type OctetString is only 
   used when RADIUS/Diameter translation occurs.  This AVP contains the 
   contents of the RADIUS Acct-Session-Id attribute. 
  9.8.5.  Acct-Multi-Session-Id AVP 
  The Acct-Multi-Session-Id AVP (AVP Code 50) is of type UTF8String, 
   following the format specified in Section 8.8.  The Acct-Multi- 
   Session-Id AVP is used to link together multiple related accounting 
   sessions, where each session would have a unique Session-Id, but the 
   same Acct-Multi-Session-Id AVP.  This AVP MAY be returned by the 
   Diameter server in an authorization answer, and MUST be used in all 
   accounting messages for the given session. 
  9.8.6.  Accounting-Sub-Session-Id AVP 
  The Accounting-Sub-Session-Id AVP (AVP Code 287) is of type 
   Unsigned64 and contains the accounting sub-session identifier.  The 
   combination of the Session-Id and this AVP MUST be unique per sub- 
   session, and the value of this AVP MUST be monotonically increased by 
   one for all new sub-sessions.  The absence of this AVP implies no 
   sub-sessions are in use, with the exception of an Accounting-Request 
   whose Accounting-Record-Type is set to STOP_RECORD.  A STOP_RECORD 
   message with no Accounting-Sub-Session-Id AVP present will signal the 
   termination of all sub-sessions for a given Session-Id. 
  9.8.7.  Accounting-Realtime-Required AVP 
  The Accounting-Realtime-Required AVP (AVP Code 483) is of type 
   Enumerated and is sent from the Diameter home authorization server to 
   the Diameter client or in the Accounting-Answer from the accounting 
   server.  The client uses information in this AVP to decide what to do 
   if the sending of accounting records to the accounting server has 
   been temporarily prevented due to, for instance, a network problem. 
   
  Calhoun, et al.             Standards Track                   [Page 123] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   DELIVER_AND_GRANT                           1 
      The AVP with Value field set to DELIVER_AND_GRANT means that the 
      service MUST only be granted as long as there is a connection to 
      an accounting server.  Note that the set of alternative accounting 
      servers are treated as one server in this sense.  Having to move 
      the accounting record stream to a backup server is not a reason to 
      discontinue the service to the user. 
  GRANT_AND_STORE                             2 
      The AVP with Value field set to GRANT_AND_STORE means that service 
      SHOULD be granted if there is a connection, or as long as records 
      can still be stored as described in Section 9.4. 
  This is the default behavior if the AVP isn't included in the 
      reply from the authorization server. 
  GRANT_AND_LOSE                              3 
      The AVP with Value field set to GRANT_AND_LOSE means that service 
      SHOULD be granted even if the records can not be delivered or 
      stored. 
  10.  AVP Occurrence Table 
  The following tables presents the AVPs defined in this document, and 
   specifies in which Diameter messages they MAY, or MAY NOT be present. 
   Note that AVPs that can only be present within a Grouped AVP are not 
   represented in this table. 
  The table uses the following symbols: 
  0     The AVP MUST NOT be present in the message. 
   0+    Zero or more instances of the AVP MAY be present in the 
         message. 
   0-1   Zero or one instance of the AVP MAY be present in the 
         message.  It is considered an error if there are more than 
         one instance of the AVP. 
   1     One instance of the AVP MUST be present in the message. 
   1+    At least one instance of the AVP MUST be present in the 
         message. 
  10.1.  Base Protocol Command AVP Table 
  The table in this section is limited to the non-accounting Command 
   Codes defined in this specification. 
   
   
   
  Calhoun, et al.             Standards Track                   [Page 124] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
                       +-----------------------------------------------+ 
                       |                  Command-Code                 | 
                       +---+---+---+---+---+---+---+---+---+---+---+---+ 
   Attribute Name      |CER|CEA|DPR|DPA|DWR|DWA|RAR|RAA|ASR|ASA|STR|STA| 
   --------------------+---+---+---+---+---+---+---+---+---+---+---+---+ 
   Acct-Interim-       |0  |0  |0  |0  |0  |0  |0-1|0  |0  |0  |0  |0  | 
     Interval          |   |   |   |   |   |   |   |   |   |   |   |   | 
   Accounting-Realtime-|0  |0  |0  |0  |0  |0  |0-1|0  |0  |0  |0  |0  | 
     Required          |   |   |   |   |   |   |   |   |   |   |   |   | 
   Acct-Application-Id |0+ |0+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Auth-Application-Id |0+ |0+ |0  |0  |0  |0  |1  |0  |1  |0  |1  |0  | 
   Auth-Grace-Period   |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Auth-Request-Type   |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Auth-Session-State  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Authorization-      |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
     Lifetime          |   |   |   |   |   |   |   |   |   |   |   |   | 
   Class               |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0+ |0+ | 
   Destination-Host    |0  |0  |0  |0  |0  |0  |1  |0  |1  |0  |0-1|0  | 
   Destination-Realm   |0  |0  |0  |0  |0  |0  |1  |0  |1  |0  |1  |0  | 
   Disconnect-Cause    |0  |0  |1  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Error-Message       |0  |0-1|0  |0-1|0  |0-1|0  |0-1|0  |0-1|0  |0-1| 
   Error-Reporting-Host|0  |0  |0  |0  |0  |0  |0  |0-1|0  |0-1|0  |0-1| 
   Failed-AVP          |0  |0+ |0  |0+ |0  |0+ |0  |0+ |0  |0+ |0  |0+ | 
   Firmware-Revision   |0-1|0-1|0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Host-IP-Address     |1+ |1+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Inband-Security-Id  |0+ |0+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Multi-Round-Time-Out|0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Origin-Host         |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  | 
   Origin-Realm        |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  |1  | 
   Origin-State-Id     |0-1|0-1|0  |0  |0-1|0-1|0-1|0-1|0-1|0-1|0-1|0-1| 
   Product-Name        |1  |1  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Proxy-Info          |0  |0  |0  |0  |0  |0  |0+ |0+ |0+ |0+ |0+ |0+ | 
   Redirect-Host       |0  |0  |0  |0  |0  |0  |0  |0+ |0  |0+ |0  |0+ | 
   Redirect-Host-Usage |0  |0  |0  |0  |0  |0  |0  |0-1|0  |0-1|0  |0-1| 
   Redirect-Max-Cache- |0  |0  |0  |0  |0  |0  |0  |0-1|0  |0-1|0  |0-1| 
     Time              |   |   |   |   |   |   |   |   |   |   |   |   | 
   Result-Code         |0  |1  |0  |1  |0  |1  |0  |1  |0  |0  |0  |1  | 
   Re-Auth-Request-Type|0  |0  |0  |0  |0  |0  |1  |0  |0  |0  |0  |0  | 
   Route-Record        |0  |0  |0  |0  |0  |0  |0+ |0  |0+ |0  |0+ |0  | 
   Session-Binding     |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Session-Id          |0  |0  |0  |0  |0  |0  |1  |1  |1  |1  |1  |1  | 
   Session-Server-     |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
     Failover          |   |   |   |   |   |   |   |   |   |   |   |   | 
   Session-Timeout     |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Supported-Vendor-Id |0+ |0+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   Termination-Cause   |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  |1  |0  | 
   User-Name           |0  |0  |0  |0  |0  |0  |0-1|0-1|0-1|0-1|0-1|0-1| 
   Vendor-Id           |1  |1  |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
   
  Calhoun, et al.             Standards Track                   [Page 125] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Vendor-Specific-    |0+ |0+ |0  |0  |0  |0  |0  |0  |0  |0  |0  |0  | 
     Application-Id    |   |   |   |   |   |   |   |   |   |   |   |   | 
   --------------------+---+---+---+---+---+---+---+---+---+---+---+---+ 
  10.2.  Accounting AVP Table 
  The table in this section is used to represent which AVPs defined in 
   this document are to be present in the Accounting messages.  These 
   AVP occurrence requirements are guidelines, which may be expanded, 
   and/or overridden by application-specific requirements in the 
   Diameter applications documents. 
  +-----------+ 
                                 |  Command  | 
                                 |    Code   | 
                                 +-----+-----+ 
   Attribute Name                | ACR | ACA | 
   ------------------------------+-----+-----+ 
   Acct-Interim-Interval         | 0-1 | 0-1 | 
   Acct-Multi-Session-Id         | 0-1 | 0-1 | 
   Accounting-Record-Number      | 1   | 1   | 
   Accounting-Record-Type        | 1   | 1   | 
   Acct-Session-Id               | 0-1 | 0-1 | 
   Accounting-Sub-Session-Id     | 0-1 | 0-1 | 
   Accounting-Realtime-Required  | 0-1 | 0-1 | 
   Acct-Application-Id           | 0-1 | 0-1 | 
   Auth-Application-Id           | 0   | 0   | 
   Class                         | 0+  | 0+  | 
   Destination-Host              | 0-1 | 0   | 
   Destination-Realm             | 1   | 0   | 
   Error-Reporting-Host          | 0   | 0+  | 
   Event-Timestamp               | 0-1 | 0-1 | 
   Origin-Host                   | 1   | 1   | 
   Origin-Realm                  | 1   | 1   | 
   Proxy-Info                    | 0+  | 0+  | 
   Route-Record                  | 0+  | 0+  | 
   Result-Code                   | 0   | 1   | 
   Session-Id                    | 1   | 1   | 
   Termination-Cause             | 0-1 | 0-1 | 
   User-Name                     | 0-1 | 0-1 | 
   Vendor-Specific-Application-Id| 0-1 | 0-1 | 
   ------------------------------+-----+-----+ 
   
   
   
   
  Calhoun, et al.             Standards Track                   [Page 126] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
11.  IANA Considerations 
  This section provides guidance to the Internet Assigned Numbers 
   Authority (IANA) regarding registration of values related to the 
   Diameter protocol, in accordance with BCP 26 [IANA].  The following 
   policies are used here with the meanings defined in BCP 26: "Private 
   Use", "First Come First Served", "Expert Review", "Specification 
   Required", "IETF Consensus", "Standards Action". 
  This section explains the criteria to be used by the IANA for 
   assignment of numbers within namespaces defined within this document. 
  Diameter is not intended as a general purpose protocol, and 
   allocations SHOULD NOT be made for purposes unrelated to 
   authentication, authorization or accounting. 
  For registration requests where a Designated Expert should be 
   consulted, the responsible IESG area director should appoint the 
   Designated Expert.  For Designated Expert with Specification 
   Required, the request is posted to the AAA WG mailing list (or, if it 
   has been disbanded, a successor designated by the Area Director) for 
   comment and review, and MUST include a pointer to a public 
   specification. Before a period of 30 days has passed, the Designated 
   Expert will either approve or deny the registration request and 
   publish a notice of the decision to the AAA WG mailing list or its 
   successor.  A denial notice must be justified by an explanation and, 
   in the cases  where it is possible, concrete suggestions on how the 
   request can be modified so as to become acceptable. 
  11.1.  AVP Header 
  As defined in Section 4, the AVP header contains three fields that 
   requires IANA namespace management; the AVP Code, Vendor-ID and Flags 
   field. 
  11.1.1.  AVP Codes 
  The AVP Code namespace is used to identify attributes.  There are 
   multiple namespaces.  Vendors can have their own AVP Codes namespace 
   which will be identified by their Vendor-ID (also known as 
   Enterprise-Number) and they control the assignments of their vendor- 
   specific AVP codes within their own namespace.  The absence of a 
   Vendor-ID or a Vendor-ID value of zero (0) identifies the IETF IANA 
   controlled AVP Codes namespace.  The AVP Codes and sometimes also 
   possible values in an AVP are controlled and maintained by IANA. 
   
   
   
Calhoun, et al.             Standards Track                   [Page 127] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   AVP Code 0 is not used. AVP Codes 1-255 are managed separately as 
   RADIUS Attribute Types [RADTYPE].  This document defines the AVP 
   Codes 257-274, 276-285, 287, 291-300, 480, 483 and 485-486.  See 
   Section 4.5 for the assignment of the namespace in this 
   specification. 
  AVPs may be allocated following Designated Expert with Specification 
   Required [IANA].  Release of blocks of AVPs (more than 3 at a time 
   for a given purpose) should require IETF Consensus. 
  Note that Diameter defines a mechanism for Vendor-Specific AVPs, 
   where the Vendor-Id field in the AVP header is set to a non-zero 
   value.  Vendor-Specific AVPs codes are for Private Use and should be 
   encouraged instead of allocation of global attribute types, for 
   functions specific only to one vendor's implementation of Diameter, 
   where no interoperability is deemed useful.  Where a Vendor-Specific 
   AVP is implemented by more than one vendor, allocation of global AVPs 
   should be encouraged instead. 
  11.1.2.  AVP Flags 
  There are 8 bits in the AVP Flags field of the AVP header, defined in 
   Section 4.  This document assigns bit 0 ('V'endor Specific), bit 1 
   ('M'andatory) and bit 2 ('P'rotected).  The remaining bits should 
   only be assigned via a Standards Action [IANA]. 
  11.2.  Diameter Header 
  As defined in Section 3, the Diameter header contains two fields that 
   require IANA namespace management; Command Code and Command Flags. 
  11.2.1.  Command Codes 
  The Command Code namespace is used to identify Diameter commands. 
   The values 0-255 are reserved for RADIUS backward compatibility, and 
   are defined as "RADIUS Packet Type Codes" in [RADTYPE].  Values 256- 
   16,777,213 are for permanent, standard commands, allocated by IETF 
   Consensus [IANA].  This document defines the Command Codes 257, 258, 
   271, 274-275, 280 and 282.  See Section 3.1 for the assignment of the 
   namespace in this specification. 
  The values 16,777,214 and 16,777,215 (hexadecimal values 0xfffffe - 
   0xffffff) are reserved for experimental commands.  As these codes are 
   only for experimental and testing purposes, no guarantee is made for 
   interoperability between Diameter peers using experimental commands, 
   as outlined in [IANA-EXP]. 
   
   
  Calhoun, et al.             Standards Track                   [Page 128] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
11.2.2.  Command Flags 
  There are eight bits in the Command Flags field of the Diameter 
   header.  This document assigns bit 0 ('R'equest), bit 1 ('P'roxy), 
   bit 2 ('E'rror) and bit 3 ('T').  Bits 4 through 7 MUST only be 
   assigned via a Standards Action [IANA]. 
  11.3.  Application Identifiers 
  As defined in Section 2.4, the Application Identifier is used to 
   identify a specific Diameter Application.  There are standards-track 
   application ids and vendor specific application ids. 
  IANA [IANA] has assigned the range 0x00000001 to 0x00ffffff for 
   standards-track applications; and 0x01000000 - 0xfffffffe for vendor 
   specific applications, on a first-come, first-served basis.  The 
   following values are allocated. 
  Diameter Common Messages            0 
      NASREQ                              1 [NASREQ] 
      Mobile-IP                           2 [DIAMMIP] 
      Diameter Base Accounting            3 
      Relay                               0xffffffff 
  Assignment of standards-track application IDs are by Designated 
   Expert with Specification Required [IANA]. 
  Both Application-Id and Acct-Application-Id AVPs use the same 
   Application Identifier space. 
  Vendor-Specific Application Identifiers, are for Private Use. 
   Vendor-Specific Application Identifiers are assigned on a First Come, 
   First Served basis by IANA. 
  11.4.  AVP Values 
  Certain AVPs in Diameter define a list of values with various 
   meanings.  For attributes other than those specified in this section, 
   adding additional values to the list can be done on a First Come, 
   First Served basis by IANA. 
  11.4.1.  Result-Code AVP Values 
  As defined in Section 7.1, the Result-Code AVP (AVP Code 268) defines 
   the values 1001, 2001-2002, 3001-3010, 4001-4002 and 5001-5017. 
  All remaining values are available for assignment via IETF Consensus 
   [IANA]. 
   
  Calhoun, et al.             Standards Track                   [Page 129] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
11.4.2.  Accounting-Record-Type AVP Values 
  As defined in Section 9.8.1, the Accounting-Record-Type AVP (AVP Code 
   480) defines the values 1-4.  All remaining values are available for 
   assignment via IETF Consensus [IANA]. 
  11.4.3.  Termination-Cause AVP Values 
  As defined in Section 8.15, the Termination-Cause AVP (AVP Code 295) 
   defines the values 1-8.  All remaining values are available for 
   assignment via IETF Consensus [IANA]. 
  11.4.4.  Redirect-Host-Usage AVP Values 
  As defined in Section 6.13, the Redirect-Host-Usage AVP (AVP Code 
   261) defines the values 0-5.  All remaining values are available for 
   assignment via IETF Consensus [IANA]. 
  11.4.5.  Session-Server-Failover AVP Values 
  As defined in Section 8.18, the Session-Server-Failover AVP (AVP Code 
   271) defines the values 0-3.  All remaining values are available for 
   assignment via IETF Consensus [IANA]. 
  11.4.6.  Session-Binding AVP Values 
  As defined in Section 8.17, the Session-Binding AVP (AVP Code 270) 
   defines the bits 1-4.  All remaining bits are available for 
   assignment via IETF Consensus [IANA]. 
  11.4.7.  Disconnect-Cause AVP Values 
  As defined in Section 5.4.3, the Disconnect-Cause AVP (AVP Code 273) 
   defines the values 0-2.  All remaining values are available for 
   assignment via IETF Consensus [IANA]. 
  11.4.8.  Auth-Request-Type AVP Values 
  As defined in Section 8.7, the Auth-Request-Type AVP (AVP Code 274) 
   defines the values 1-3.  All remaining values are available for 
   assignment via IETF Consensus [IANA]. 
  11.4.9.  Auth-Session-State AVP Values 
  As defined in Section 8.11, the Auth-Session-State AVP (AVP Code 277) 
   defines the values 0-1.  All remaining values are available for 
   assignment via IETF Consensus [IANA]. 
   
   
Calhoun, et al.             Standards Track                   [Page 130] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
11.4.10.  Re-Auth-Request-Type AVP Values 
  As defined in Section 8.12, the Re-Auth-Request-Type AVP (AVP Code 
   285) defines the values 0-1.  All remaining values are available for 
   assignment via IETF Consensus [IANA]. 
  11.4.11.  Accounting-Realtime-Required AVP Values 
  As defined in Section 9.8.7, the Accounting-Realtime-Required AVP 
   (AVP Code 483) defines the values 1-3.  All remaining values are 
   available for assignment via IETF Consensus [IANA]. 
  11.4.12.   Inband-Security-Id AVP (code 299) 
  As defined in Section 6.10, the Inband-Security-Id AVP (AVP Code 299) 
   defines the values 0-1.  All remaining values are available for 
   assignment via IETF Consensus [IANA]. 
  11.5.  Diameter TCP/SCTP Port Numbers 
  The IANA has assigned TCP and SCTP port number 3868 to Diameter. 
  11.6.  NAPTR Service Fields 
  The registration in the RFC MUST include the following information: 
  Service Field: The service field being registered.  An example for a 
   new fictitious transport protocol called NCTP might be "AAA+D2N". 
  Protocol: The specific transport protocol associated with that 
   service field.  This MUST include the name and acronym for the 
   protocol, along with reference to a document that describes the 
   transport protocol.  For example - "New Connectionless Transport 
   Protocol (NCTP), RFC 5766". 
  Name and Contact Information: The name, address, email address and 
   telephone number for the person performing the registration. 
  The following values have been placed into the registry: 
  Services Field               Protocol 
      AAA+D2T                       TCP 
      AAA+D2S                       SCTP 
  12.  Diameter protocol related configurable parameters 
  This section contains the configurable parameters that are found 
   throughout this document: 
   
  Calhoun, et al.             Standards Track                   [Page 131] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   Diameter Peer 
      A Diameter entity MAY communicate with peers that are statically 
      configured.  A statically configured Diameter peer would require 
      that either the IP address or the fully qualified domain name 
      (FQDN) be supplied, which would then be used to resolve through 
      DNS. 
  Realm Routing Table 
      A Diameter proxy server routes messages based on the realm portion 
      of a Network Access Identifier (NAI).  The server MUST have a 
      table of Realm Names, and the address of the peer to which the 
      message must be forwarded to.  The routing table MAY also include 
      a "default route", which is typically used for all messages that 
      cannot be locally processed. 
  Tc timer 
      The Tc timer controls the frequency that transport connection 
      attempts are done to a peer with whom no active transport 
      connection exists.  The recommended value is 30 seconds. 
  13.  Security Considerations 
  The Diameter base protocol assumes that messages are secured by using 
   either IPSec or TLS.  This security mechanism is acceptable in 
   environments where there is no untrusted third party agent.  In other 
   situations, end-to-end security is needed. 
  Diameter clients, such as Network Access Servers (NASes) and Mobility 
   Agents MUST support IP Security [SECARCH] and MAY support TLS [TLS]. 
   Diameter servers MUST support TLS and IPsec.  Diameter 
   implementations MUST use transmission-level security of some kind 
   (IPsec or TLS) on each connection. 
  If a Diameter connection is not protected by IPsec, then the CER/CEA 
   exchange MUST include an Inband-Security-ID AVP with a value of TLS. 
   For TLS usage, a TLS handshake will begin when both ends are in the 
   open state, after completion of the CER/CEA exchange.  If the TLS 
   handshake is successful, all further messages will be sent via TLS. 
   If the handshake fails, both ends move to the closed state. 
  It is suggested that IPsec be used primarily at the edges for intra- 
   domain exchanges.  For NAS devices without certificate support, pre- 
   shared keys can be used between the NAS and a local AAA proxy. 
  For protection of inter-domain exchanges, TLS is recommended.  See 
   Sections 13.1 and 13.2 for more details on IPsec and TLS usage. 
   
   
  Calhoun, et al.             Standards Track                   [Page 132] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
13.1.  IPsec Usage 
  All Diameter implementations MUST support IPsec ESP [IPsec] in 
   transport mode with non-null encryption and authentication algorithms 
   to provide per-packet authentication, integrity protection and 
   confidentiality, and MUST support the replay protection mechanisms of 
   IPsec. 
  Diameter implementations MUST support IKE for peer authentication, 
   negotiation of security associations, and key management, using the 
   IPsec DOI [IPSECDOI].  Diameter implementations MUST support peer 
   authentication using a pre-shared key, and MAY support certificate- 
   based peer authentication using digital signatures.  Peer 
   authentication using the public key encryption methods outlined in 
   IKE's Sections 5.2 and 5.3 [IKE] SHOULD NOT be used. 
  Conformant implementations MUST support both IKE Main Mode and 
   Aggressive Mode.  When pre-shared keys are used for authentication, 
   IKE Aggressive Mode SHOULD be used, and IKE Main Mode SHOULD NOT be 
   used.  When digital signatures are used for authentication, either 
   IKE Main Mode or IKE Aggressive Mode MAY be used. 
  When digital signatures are used to achieve authentication, an IKE 
   negotiator SHOULD use IKE Certificate Request Payload(s) to specify 
   the certificate authority (or authorities) that are trusted in 
   accordance with its local policy.  IKE negotiators SHOULD use 
   pertinent certificate revocation checks before accepting a PKI 
   certificate for use in IKE's authentication procedures. 
  The Phase 2 Quick Mode exchanges used to negotiate protection for 
   Diameter connections MUST explicitly carry the Identity Payload 
   fields (IDci and IDcr).  The DOI provides for several types of 
   identification data.  However, when used in conformant 
   implementations, each ID Payload MUST carry a single IP address and a 
   single non-zero port number, and MUST NOT use the IP Subnet or IP 
   Address Range formats.  This allows the Phase 2 security association 
   to correspond to specific TCP and SCTP connections. 
  Since IPsec acceleration hardware may only be able to handle a 
   limited number of active IKE Phase 2 SAs, Phase 2 delete messages may 
   be sent for idle SAs, as a means of keeping the number of active 
   Phase 2 SAs to a minimum.  The receipt of an IKE Phase 2 delete 
   message SHOULD NOT be interpreted as a reason for tearing down a 
   Diameter connection.  Rather, it is preferable to leave the 
   connection up, and if additional traffic is sent on it, to bring up 
   another IKE Phase 2 SA to protect it.  This avoids the potential for 
   continually bringing connections up and down. 
   
   
Calhoun, et al.             Standards Track                   [Page 133] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
13.2.  TLS Usage 
  A Diameter node that initiates a connection to another Diameter node 
   acts as a TLS client according to [TLS], and a Diameter node that 
   accepts a connection acts as a TLS server.  Diameter nodes 
   implementing TLS for security MUST mutually authenticate as part of 
   TLS session establishment.  In order to ensure mutual authentication, 
   the Diameter node acting as TLS server must request a certificate 
   from the Diameter node acting as TLS client, and the Diameter node 
   acting as TLS client MUST be prepared to supply a certificate on 
   request. 
  Diameter nodes MUST be able to negotiate the following TLS cipher 
   suites: 
  TLS_RSA_WITH_RC4_128_MD5 
      TLS_RSA_WITH_RC4_128_SHA 
      TLS_RSA_WITH_3DES_EDE_CBC_SHA 
  Diameter nodes SHOULD be able to negotiate the following TLS cipher 
   suite: 
  TLS_RSA_WITH_AES_128_CBC_SHA 
  Diameter nodes MAY negotiate other TLS cipher suites. 
  13.3.  Peer-to-Peer Considerations 
  As with any peer-to-peer protocol, proper configuration of the trust 
   model within a Diameter peer is essential to security.  When 
   certificates are used, it is necessary to configure the root 
   certificate authorities trusted by the Diameter peer.  These root CAs 
   are likely to be unique to Diameter usage and distinct from the root 
   CAs that might be trusted for other purposes such as Web browsing. 
   In general, it is expected that those root CAs will be configured so 
   as to reflect the business relationships between the organization 
   hosting the Diameter peer and other organizations.  As a result, a 
   Diameter peer will typically not be configured to allow connectivity 
   with any arbitrary peer.  When certificate authentication Diameter 
   peers may not be known beforehand, and therefore peer discovery may 
   be required. 
  Note that IPsec is considerably less flexible than TLS when it comes 
   to configuring root CAs.  Since use of Port identifiers is prohibited 
   within IKE Phase 1, within IPsec it is not possible to uniquely 
   configure trusted root CAs for each application individually; the 
   same policy must be used for all applications.  This implies, for 
   example, that a root CA trusted for use with Diameter must also be 
   
  Calhoun, et al.             Standards Track                   [Page 134] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   trusted to protect SNMP.  These restrictions can be awkward at best. 
   Since TLS supports application-level granularity in certificate 
   policy, TLS SHOULD be used to protect Diameter connections between 
   administrative domains.  IPsec is most appropriate for intra-domain 
   usage when pre-shared keys are used as a security mechanism. 
  When pre-shared key authentication is used with IPsec to protect 
   Diameter, unique pre-shared keys are configured with Diameter peers, 
   who are identified by their IP address (Main Mode), or possibly their 
   FQDN (Aggressive Mode).  As a result, it is necessary for the set of 
   Diameter peers to be known beforehand.  Therefore, peer discovery is 
   typically not necessary. 
  The following is intended to provide some guidance on the issue. 
  It is recommended that a Diameter peer implement the same security 
   mechanism (IPsec or TLS) across all its peer-to-peer connections. 
   Inconsistent use of security mechanisms can result in redundant 
   security mechanisms being used (e.g., TLS over IPsec) or worse, 
   potential security vulnerabilities.  When IPsec is used with 
   Diameter, a typical security policy for outbound traffic is "Initiate 
   IPsec, from me to any, destination port Diameter"; for inbound 
   traffic, the policy would be "Require IPsec, from any to me, 
   destination port Diameter". 
  This policy causes IPsec to be used whenever a Diameter peer 
   initiates a connection to another Diameter peer, and to be required 
   whenever an inbound Diameter connection occurs.  This policy is 
   attractive, since it does not require policy to be set for each peer 
   or dynamically modified each time a new Diameter connection is 
   created; an IPsec SA is automatically created based on a simple 
   static policy.  Since IPsec extensions are typically not available to 
   the sockets API on most platforms, and IPsec policy functionality is 
   implementation dependent, use of a simple static policy is the often 
   the simplest route to IPsec-enabling a Diameter implementation. 
  One implication of the recommended policy is that if a node is using 
   both TLS and IPsec, there is not a convenient way in which to use 
   either TLS or IPsec, but not both, without reserving an additional 
   port for TLS usage.  Since Diameter uses the same port for TLS and 
   non-TLS usage, where the recommended IPsec policy is put in place, a 
   TLS-protected connection will match the IPsec policy, and both IPsec 
   and TLS will be used to protect the Diameter connection.  To avoid 
   this, it would be necessary to plumb peer-specific policies either 
   statically or dynamically. 
   
   
   
Calhoun, et al.             Standards Track                   [Page 135] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   If IPsec is used to secure Diameter peer-to-peer connections, IPsec 
   policy SHOULD be set so as to require IPsec protection for inbound 
   connections, and to initiate IPsec protection for outbound 
   connections.  This can be accomplished via use of inbound and 
   outbound filter policy. 
  14.  References 
  14.1.  Normative References 
  [AAATRANS]     Aboba, B. and J. Wood, "Authentication, Authorization 
                  and Accounting (AAA) Transport Profile", RFC 3539, 
                  June 2003. 
  [ABNF]         Crocker, D. and P. Overell, "Augmented BNF for Syntax 
                  Specifications: ABNF", RFC 2234, November 1997. 
  [ASSIGNNO]     Reynolds, J., "Assigned Numbers: RFC 1700 is Replaced 
                  by an On-line Database", RFC 3232, January 2002. 
  [DIFFSERV]     Nichols, K., Blake, S., Baker, F. and D. Black, 
                  "Definition of the Differentiated Services Field (DS 
                  Field) in the IPv4 and IPv6 Headers", RFC 2474, 
                  December 1998. 
  [DIFFSERVAF]   Heinanen, J., Baker, F., Weiss, W. and J. Wroclawski, 
                  "Assured Forwarding PHB Group", RFC 2597, June 1999. 
  [DIFFSERVEF]   Davie, B., Charny, A., Bennet, J., Benson, K., Le 
                  Boudec, J., Courtney, W., Davari, S., Firoiu, V. and 
                  D. Stiliadis, "An Expedited Forwarding PHB", RFC 3246, 
                  March 2002. 
  [DNSSRV]       Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR 
                  for specifying the location of services (DNS SRV)", 
                  RFC 2782, February 2000. 
  [EAP]          Blunk, L. and J. Vollbrecht, "PPP Extensible 
                  Authentication Protocol (EAP)", RFC 2284, March 1998. 
  [FLOATPOINT]   Institute of Electrical and Electronics Engineers, 
                  "IEEE Standard for Binary Floating-Point Arithmetic", 
                  ANSI/IEEE Standard 754-1985, August 1985. 
  [IANA]         Narten, T. and H. Alvestrand, "Guidelines for Writing 
                  an IANA Considerations Section in RFCs", BCP 26, RFC 
                  2434, October 1998. 
   
   
Calhoun, et al.             Standards Track                   [Page 136] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   [IANAADFAM]    IANA; "Address Family Numbers", 
                  http://www.iana.org/assignments/address-family-numbers 
  [IANAWEB]      IANA, "Number assignment", http://www.iana.org 
  [IKE]          Harkins, D. and D. Carrel, "The Internet Key Exchange 
                  (IKE)", RFC 2409, November 1998. 
  [IPComp]       Shacham, A., Monsour, R., Pereira, R. and M. Thomas, 
                  "IP Payload Compression Protocol (IPComp)", RFC 3173, 
                  September 2001. 
  [IPSECDOI]     Piper, D., "The Internet IP Security Domain of 
                  Interpretation for ISAKMP", RFC 2407, November 1998. 
  [IPV4]         Postel, J., "Internet Protocol", STD 5, RFC 791, 
                  September 1981. 
  [IPV6]         Hinden, R. and S. Deering, "IP Version 6 Addressing 
                  Architecture", RFC 2373, July 1998. 
  [KEYWORDS]     Bradner, S., "Key words for use in RFCs to Indicate 
                  Requirement Levels", BCP 14, RFC 2119, March 1997. 
  [NAI]          Aboba, B. and M. Beadles, "The Network Access 
                  Identifier", RFC 2486, January 1999. 
  [NAPTR]        Mealling, M. and R. Daniel, "The naming authority 
                  pointer (NAPTR) DNS resource record," RFC 2915, 
                  September 2000. 
  [RADTYPE]      IANA, "RADIUS Types", 
                  http://www.iana.org/assignments/radius-types 
  [SCTP]         Stewart, R., Xie, Q., Morneault, K., Sharp, C., 
                  Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M., 
                  Zhang, L. and V. Paxson, "Stream Control Transmission 
                  Protocol", RFC 2960, October 2000. 
  [SLP]          Veizades, J., Guttman, E., Perkins, C. and M. Day, 
                  "Service Location Protocol, Version 2", RFC 2165, June 
                  1999. 
  [SNTP]         Mills, D., "Simple Network Time Protocol (SNTP) 
                  Version 4 for IPv4, IPv6 and OSI", RFC 2030, October 
                  1996. 
   
   
  Calhoun, et al.             Standards Track                   [Page 137] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   [TCP]          Postel, J. "Transmission Control Protocol", STD 7, RFC 
                  793, January 1981. 
  [TEMPLATE]     Guttman, E., Perkins, C. and J. Kempf, "Service 
                  Templates and Service: Schemes", RFC 2609, June 1999. 
  [TLS]          Dierks, T. and C. Allen, "The TLS Protocol Version 
                  1.0", RFC 2246, January 1999. 
  [TLSSCTP]      Jungmaier, A., Rescorla, E. and M. Tuexen, "Transport 
                  Layer Security over Stream Control Transmission 
                  Protocol", RFC 3436, December 2002. 
  [URI]          Berners-Lee, T., Fielding, R. and L. Masinter, 
                  "Uniform Resource Identifiers (URI): Generic Syntax", 
                  RFC 2396, August 1998. 
  [UTF8]         Yergeau, F., "UTF-8, a transformation format of ISO 
                  10646", RFC 2279, January 1998. 
  14.2.  Informative References 
  [AAACMS]       P. Calhoun, W. Bulley, S. Farrell, "Diameter CMS 
                  Security Application", Work in Progress. 
  [AAAREQ]       Aboba, B., Calhoun, P., Glass, S., Hiller, T., McCann, 
                  P., Shiino, H., Zorn, G., Dommety, G., Perkins, C., 
                  Patil, B., Mitton, D., Manning, S., Beadles, M., 
                  Walsh, P., Chen, X., Sivalingham, S., Hameed, A., 
                  Munson, M., Jacobs, S., Lim, B., Hirschman, B., Hsu, 
                  R., Xu, Y., Campbell, E., Baba, S. and E. Jaques, 
                  "Criteria for Evaluating AAA Protocols for Network 
                  Access", RFC 2989, November 2000. 
  [ACCMGMT]      Aboba, B., Arkko, J. and D. Harrington. "Introduction 
                  to Accounting Management", RFC 2975, October 2000. 
  [CDMA2000]     Hiller, T., Walsh, P., Chen, X., Munson, M., Dommety, 
                  G., Sivalingham, S., Lim, B., McCann, P., Shiino, H., 
                  Hirschman, B., Manning, S., Hsu, R., Koo, H., Lipford, 
                  M., Calhoun, P., Lo, C., Jaques, E., Campbell, E., Xu, 
                  Y., Baba, S., Ayaki, T., Seki, T. and A.  Hameed, 
                  "CDMA2000 Wireless Data Requirements for AAA", RFC 
                  3141, June 2001. 
  [DIAMMIP]      P. Calhoun, C. Perkins, "Diameter Mobile IP 
                  Application", Work in Progress. 
   
   
Calhoun, et al.             Standards Track                   [Page 138] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   [DYNAUTH]      Chiba, M., Dommety, G., Eklund, M., Mitton, D. and B. 
                  Aboba, "Dynamic Authorization Extensions to Remote 
                  Authentication Dial In User Service (RADIUS)", RFC 
                  3576, July 2003. 
  [IANA-EXP]     T. Narten, "Assigning Experimental and Testing Numbers 
                  Considered Useful", Work in Progress. 
  [MIPV4]        Perkins, C., "IP Mobility Support for IPv4", RFC 3344, 
                  August 2002. 
  [MIPREQ]       Glass, S., Hiller, T., Jacobs, S. and C. Perkins, 
                  "Mobile IP Authentication, Authorization, and 
                  Accounting Requirements", RFC 2977, October 2000. 
  [NASNG]        Mitton, D. and M. Beadles, "Network Access Server 
                  Requirements Next Generation (NASREQNG) NAS Model", 
                  RFC 2881, July 2000. 
  [NASREQ]       P. Calhoun, W. Bulley, A. Rubens, J. Haag, "Diameter 
                  NASREQ Application", Work in Progress. 
  [NASCRIT]      Beadles, M. and D. Mitton, "Criteria for Evaluating 
                  Network Access Server Protocols", RFC 3169, September 
                  2001. 
  [PPP]          Simpson, W., "The Point-to-Point Protocol (PPP)", STD 
                  51, RFC 1661, July 1994. 
  [PROXYCHAIN]   Aboba, B. and J. Vollbrecht, "Proxy Chaining and 
                  Policy Implementation in Roaming", RFC 2607, June 
                  1999. 
  [RADACCT]      Rigney, C., "RADIUS Accounting", RFC 2866, June 2000. 
  [RADEXT]       Rigney, C., Willats, W. and P. Calhoun, "RADIUS 
                  Extensions", RFC 2869, June 2000. 
  [RADIUS]       Rigney, C., Willens, S., Rubens, A. and W. Simpson, 
                  "Remote Authentication Dial In User Service (RADIUS)", 
                  RFC 2865, June 2000. 
  [ROAMREV]      Aboba, B., Lu, J., Alsop, J., Ding, J. and W. Wang, 
                  "Review of Roaming Implementations", RFC 2194, 
                  September 1997. 
  [ROAMCRIT]     Aboba, B. and G. Zorn, "Criteria for Evaluating 
                  Roaming Protocols", RFC 2477, January 1999. 
   
  Calhoun, et al.             Standards Track                   [Page 139] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   [SECARCH]      Kent, S. and R. Atkinson, "Security Architecture for 
                  the Internet Protocol", RFC 2401, November 1998. 
  [TACACS]       Finseth, C., "An Access Control Protocol, Sometimes 
                  Called TACACS", RFC 1492, July 1993. 
  15.  Acknowledgements 
  The authors would like to thank Nenad Trifunovic, Tony Johansson and 
   Pankaj Patel for their participation in the pre-IETF Document Reading 
   Party.  Allison Mankin, Jonathan Wood and Bernard Aboba provided 
   invaluable assistance in working out transport issues, and similarly 
   with Steven Bellovin in the security area. 
  Paul Funk and David Mitton were instrumental in getting the Peer 
   State Machine correct, and our deep thanks go to them for their time. 
  Text in this document was also provided by Paul Funk, Mark Eklund, 
   Mark Jones and Dave Spence.  Jacques Caron provided many great 
   comments as a result of a thorough review of the spec. 
  The authors would also like to acknowledge the following people for 
   their contribution in the development of the Diameter protocol: 
  Allan C. Rubens, Haseeb Akhtar, William Bulley, Stephen Farrell, 
   David Frascone, Daniel C. Fox, Lol Grant, Ignacio Goyret, Nancy 
   Greene, Peter Heitman, Fredrik Johansson, Mark Jones, Martin Julien, 
   Bob Kopacz, Paul Krumviede, Fergal Ladley, Ryan Moats, Victor Muslin, 
   Kenneth Peirce, John Schnizlein, Sumit Vakil, John R. Vollbrecht and 
   Jeff Weisberg. 
  Finally, Pat Calhoun would like to thank Sun Microsystems since most 
   of the effort put into this document was done while he was in their 
   employ. 
   
   
   
   
   
   
   
   
  Calhoun, et al.             Standards Track                   [Page 140] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
Appendix A.  Diameter Service Template 
  The following service template describes the attributes used by 
   Diameter servers to advertise themselves.  This simplifies the 
   process of selecting an appropriate server to communicate with.  A 
   Diameter client can request specific Diameter servers based on 
   characteristics of the Diameter service desired (for example, an AAA 
   server to use for accounting.) 
  Name of submitter:  "Erik Guttman"  Language of 
   service template:  en 
  Security Considerations: 
      Diameter clients and servers use various cryptographic mechanisms 
      to protect communication integrity, confidentiality as well as 
      perform end-point authentication.  It would thus be difficult if 
      not impossible for an attacker to advertise itself using SLPv2 and 
      pose as a legitimate Diameter peer without proper preconfigured 
      secrets or cryptographic keys.  Still, as Diameter services are 
      vital for network operation it is important to use SLPv2 
      authentication to prevent an attacker from modifying or 
      eliminating service advertisements for legitimate Diameter 
      servers. 
  Template text: 
   -------------------------template begins here----------------------- 
   template-type=service:diameter 
  template-version=0.0 
  template-description= 
     The Diameter protocol is defined by RFC 3588. 
  template-url-syntax= 
     url-path= ; The Diameter URL format is described in Section 2.9. 
               ; Example: 'aaa://aaa.example.com:1812;transport=tcp 
      supported-auth-applications= string L M 
      # This attribute lists the Diameter applications supported by the 
      # AAA implementation.  The applications currently defined are: 
      #  Application Name     Defined by 
      #  ----------------     ----------------------------------- 
      #  NASREQ               Diameter Network Access Server Application 
      #  MobileIP             Diameter Mobile IP Application 
      # 
      # Notes: 
      #   . Diameter implementations support one or more applications. 
      #   . Additional applications may be defined in the future. 
      #     An updated service template will be created at that time. 
   
  Calhoun, et al.             Standards Track                   [Page 141] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
      # 
      NASREQ,MobileIP 
  supported-acct-applications= string L M 
      # This attribute lists the Diameter applications supported by the 
      # AAA implementation.  The applications currently defined are: 
      #  Application Name     Defined by 
      #  ----------------     ----------------------------------- 
      #  NASREQ               Diameter Network Access Server Application 
      #  MobileIP             Diameter Mobile IP Application 
      # 
      # Notes: 
      #   . Diameter implementations support one or more applications. 
      #   . Additional applications may be defined in the future. 
      #     An updated service template will be created at that time. 
      # 
      NASREQ,MobileIP 
  supported-transports= string L M 
      SCTP 
      # This attribute lists the supported transports that the Diameter 
      # implementation accepts.  Note that a compliant Diameter 
      # implementation MUST support SCTP, though it MAY support other 
      # transports, too. 
      SCTP,TCP 
  -------------------------template ends here----------------------- 
  Appendix B.  NAPTR Example 
  As an example, consider a client that wishes to resolve aaa:ex.com. 
   The client performs a NAPTR query for that domain, and the following 
   NAPTR records are returned: 
  ;;          order pref flags service           regexp  replacement 
      IN NAPTR 50   50  "s"  "AAA+D2S"           "" 
      _diameter._sctp.example.com IN NAPTR 100  50  "s"  "AAA+D2T" 
      ""  _aaa._tcp.example.com 
  This indicates that the server supports SCTP, and TCP, in that order. 
   If the client supports over SCTP, SCTP will be used, targeted to a 
   host determined by an SRV lookup of _diameter._sctp.ex.com. That 
   lookup would return: 
  ;;          Priority Weight Port   Target 
      IN SRV  0        1      5060   server1.example.com IN SRV  0 
      2      5060   server2.example.com 
   
   
Calhoun, et al.             Standards Track                   [Page 142] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
Appendix C.  Duplicate Detection 
  As described in Section 9.4, accounting record duplicate detection is 
   based on session identifiers.  Duplicates can appear for various 
   reasons: 
  -  Failover to an alternate server.  Where close to real-time 
      performance is required, failover thresholds need to be kept low 
      and this may lead to an increased likelihood of duplicates. 
      Failover can occur at the client or within Diameter agents. 
  -  Failure of a client or agent after sending of a record from non- 
      volatile memory, but prior to receipt of an application layer ACK 
      and deletion of the record. record to be sent.  This will result 
      in retransmission of the record soon after the client or agent has 
      rebooted. 
  -  Duplicates received from RADIUS gateways.  Since the 
      retransmission behavior of RADIUS is not defined within [RFC2865], 
      the likelihood of duplication will vary according to the 
      implementation. 
  -  Implementation problems and misconfiguration. 
  The T flag is used as an indication of an application layer 
   retransmission event, e.g., due to failover to an alternate server. 
   It is defined only for request messages sent by Diameter clients or 
   agents.  For instance, after a reboot, a client may not know whether 
   it has already tried to send the accounting records in its non- 
   volatile memory before the reboot occurred.  Diameter servers MAY use 
   the T flag as an aid when processing requests and detecting duplicate 
   messages.  However, servers that do this MUST ensure that duplicates 
   are found even when the first transmitted request arrives at the 
   server after the retransmitted request.  It can be used only in cases 
   where no answer has been received from the Server for a request and 
   the request is sent again, (e.g., due to a failover to an alternate 
   peer, due to a recovered primary peer or due to a client re-sending a 
   stored record from non-volatile memory such as after reboot of a 
   client or agent). 
  In some cases the Diameter accounting server can delay the duplicate 
   detection and accounting record processing until a post-processing 
   phase takes place.  At that time records are likely to be sorted 
   according to the included User-Name and duplicate elimination is easy 
   in this case.  In other situations it may be necessary to perform 
   real-time duplicate detection, such as when credit limits are imposed 
   or real-time fraud detection is desired. 
   
   
Calhoun, et al.             Standards Track                   [Page 143] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
   In general, only generation of duplicates due to failover or re- 
   sending of records in non-volatile storage can be reliably detected 
   by Diameter clients or agents.  In such cases the Diameter client or 
   agents can mark the message as possible duplicate by setting the T 
   flag.  Since the Diameter server is responsible for duplicate 
   detection, it can choose to make use of the T flag or not, in order 
   to optimize duplicate detection.  Since the T flag does not affect 
   interoperability, and may not be needed by some servers, generation 
   of the T flag is REQUIRED for Diameter clients and agents, but MAY be 
   implemented by Diameter servers. 
  As an example, it can be usually be assumed that duplicates appear 
   within a time window of longest recorded network partition or device 
   fault, perhaps a day.  So only records within this time window need 
   to be looked at in the backward direction.  Secondly, hashing 
   techniques or other schemes, such as the use of the T flag in the 
   received messages, may be used to eliminate the need to do a full 
   search even in this set except for rare cases. 
  The following is an example of how the T flag may be used by the 
   server to detect duplicate requests. 
  A Diameter server MAY check the T flag of the received message to 
      determine if the record is a possible duplicate.  If the T flag is 
      set in the request message, the server searches for a duplicate 
      within a configurable duplication time window backward and 
      forward.  This limits database searching to those records where 
      the T flag is set.  In a well run network, network partitions and 
      device faults will presumably be rare events, so this approach 
      represents a substantial optimization of the duplicate detection 
      process.  During failover, it is possible for the original record 
      to be received after the T flag marked record, due to differences 
      in network delays experienced along the path by the original and 
      duplicate transmissions.  The likelihood of this occurring 
      increases as the failover interval is decreased.  In order to be 
      able to detect out of order duplicates, the Diameter server should 
      use backward and forward time windows when performing duplicate 
      checking for the T flag marked request.  For example, in order to 
      allow time for the original record to exit the network and be 
      recorded by the accounting server, the Diameter server can delay 
      processing records with the T flag set until a time period 
      TIME_WAIT + RECORD_PROCESSING_TIME has elapsed after the closing 
      of the original transport connection.  After this time period has 
      expired, then it may check the T flag marked records against the 
      database with relative assurance that the original records, if 
      sent, have been received and recorded. 
   
   
  Calhoun, et al.             Standards Track                   [Page 144] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
Appendix D.  Intellectual Property Statement 
  The IETF takes no position regarding the validity or scope of any 
   intellectual property or other rights that might be claimed to 
   pertain to the implementation or use of the technology described in 
   this document or the extent to which any license under such rights 
   might or might not be available; neither does it represent that it 
   has made any effort to identify any such rights.  Information on the 
   IETF's procedures with respect to rights in standards-track and 
   standards-related documentation can be found in BCP-11.  Copies of 
   claims of rights made available for publication and any assurances of 
   licenses to be made available, or the result of an attempt made to 
   obtain a general license or permission for the use of such 
   proprietary rights by implementers or users of this specification can 
   be obtained from the IETF Secretariat. 
  The IETF invites any interested party to bring to its attention any 
   copyrights, patents or patent applications, or other proprietary 
   rights which may cover technology that may be required to practice 
   this standard.  Please address the information to the IETF Executive 
   Director. 
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
Calhoun, et al.             Standards Track                   [Page 145] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
Authors' Addresses 
  Pat R. Calhoun 
   Airespace, Inc. 
   110 Nortech Parkway 
   San Jose, California, 95134 
   USA 
  Phone:  +1 408-635-2023 
   Fax:  +1 408-635-2020 
   EMail:  pcalhoun@airespace.com 
  John Loughney 
   Nokia Research Center 
   Itamerenkatu 11-13 
   00180 Helsinki 
   Finland 
  Phone:  +358 50 483 6242 
   EMail:  john.Loughney@nokia.com 
  Jari Arkko 
   Ericsson 
   02420 Jorvas 
   Finland 
  Phone: +358 40 5079256 
   EMail: Jari.Arkko@ericsson.com 
  Erik Guttman 
   Sun Microsystems, Inc. 
   Eichhoelzelstr. 7 
   74915 Waibstadt 
   Germany 
  Phone:  +49 7263 911 701 
   EMail:  erik.guttman@sun.com 
  Glen Zorn 
   Cisco Systems, Inc. 
   500 108th Avenue N.E., Suite 500 
   Bellevue, WA 98004 
   USA 
  Phone:  +1 425 438 8218 
   
   
   
Calhoun, et al.             Standards Track                   [Page 146] 
 
RFC 3588                Diameter Based Protocol           September 2003 
   
Full Copyright Statement 
  Copyright (C) The Internet Society (2003).  All Rights Reserved. 
  This document and translations of it may be copied and furnished to 
   others, and derivative works that comment on or otherwise explain it 
   or assist in its implementation may be prepared, copied, published 
   and distributed, in whole or in part, without restriction of any 
   kind, provided that the above copyright notice and this paragraph are 
   included on all such copies and derivative works.  However, this 
   document itself may not be modified in any way, such as by removing 
   the copyright notice or references to the Internet Society or other 
   Internet organizations, except as needed for the purpose of 
   developing Internet standards in which case the procedures for 
   copyrights defined in the Internet Standards process must be 
   followed, or as required to translate it into languages other than 
   English. 
  The limited permissions granted above are perpetual and will not be 
   revoked by the Internet Society or its successors or assigns. 
  This document and the information contained herein is provided on an 
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING 
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING 
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION 
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF 
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
  Acknowledgement 
  Funding for the RFC Editor function is currently provided by the 
   Internet Society. 
   
   
   
   
   
   
   
   
   
  Calhoun, et al.             Standards Track                   [Page 147] |   
 
 
 
 |